Fine connectedness and alpha-excessive functions
Annales de l'Institut Fourier, Tome 22 (1972) no. 2, pp. 165-168.

Dans cet article, pour un processus standard et pour un α0, les conditions pour qu’une fonction α-excessive nulle en un point soit nulle identiquement, sont étudiées.

In this article, for any Standard Process X and for any α0, the conditions under which an α-excessive function, vanishing at a point, vanishes identically are investigated.

@article{AIF_1972__22_2_165_0,
     author = {Ramaswamy, S.},
     title = {Fine connectedness and alpha-excessive functions},
     journal = {Annales de l'Institut Fourier},
     pages = {165--168},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {22},
     number = {2},
     year = {1972},
     doi = {10.5802/aif.417},
     zbl = {0232.60038},
     mrnumber = {50 #11475},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.417/}
}
Ramaswamy, S. Fine connectedness and alpha-excessive functions. Annales de l'Institut Fourier, Tome 22 (1972) no. 2, pp. 165-168. doi : 10.5802/aif.417. http://www.numdam.org/articles/10.5802/aif.417/

[1] Blumenthal AND Getoor, Markov Processes and Potential Theory (Academic Press, 1968). | MR 41 #9348 | Zbl 0169.49204

[2] P. A. Meyer, Processus de Markov, (Lecture Notes in Mathematics, n° 26 Springer-Verlag, 1967). | MR 36 #2219 | Zbl 0189.51403

[3] P. A. Meyer, Probability and Potentials (Blaisdell Publishing Company, 1966). | MR 34 #5119 | Zbl 0138.10401