Projective invariants of an orthogonal ennuple in a Finsler space
Annales de l'Institut Fourier, Tome 18 (1968) no. 2, p. 337-342
L’auteur étudie les transformations projectives au sens de Cartan des coefficients de connexion Γ jk *i (x,x ˙) ; il découvre certains objets géométriques qui sont les invariants projectifs des n-plets orthogonaux λ (a) i (x) dans un espace finslérien.
@article{AIF_1968__18_2_337_0,
     author = {Pande, H. D.},
     title = {Projective invariants of an orthogonal ennuple in a Finsler space},
     journal = {Annales de l'Institut Fourier},
     publisher = {Imprimerie Durand},
     address = {28 - Luisant},
     volume = {18},
     number = {2},
     year = {1968},
     pages = {337-342},
     doi = {10.5802/aif.304},
     zbl = {0172.47105},
     mrnumber = {39 \#3434},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1968__18_2_337_0}
}
Pande, H. D. Projective invariants of an orthogonal ennuple in a Finsler space. Annales de l'Institut Fourier, Tome 18 (1968) no. 2, pp. 337-342. doi : 10.5802/aif.304. http://www.numdam.org/item/AIF_1968__18_2_337_0/

[1] H. Rund, The differential Geometry of Finsler spaces, Springer-Verlag, Berlin (1959). | MR 21 #4462 | Zbl 0087.36604

[2] B. B. Sinha, Projective Invariants, Maths. Student, XXXIII, No. 2 and 3 (1965), 121-127. | MR 32 #8292 | Zbl 0131.19702

[3] R. S. Mishra, On the congruence of curves through points of a subspace imbedded in a Riemann space, Ann. Soc. Sci., Bruxelles (1951), 109-115. | MR 13,868e | Zbl 0044.18502

[4] T. Y. Thomas, Differential Geometry of generalised spaces, Cambridge (1934).

[5] L. Berwald, On the projective geometry of paths, Ann. Maths., 37 (1936), 879-898. | JFM 62.0878.02 | Zbl 0015.17602

[6] H. D. Pande, The projective transformation in a Finsler space, Atti della Accad. Naz., Lincei. Rendiconti, XLIII, No 6 (1967), 480-484. | MR 38 #5147 | Zbl 0157.52401