@article{AFST_2004_6_13_3_291_0, author = {Ecalle, Jean and Vallet, Bruno}, title = {Intertwined mappings}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {291--376}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 13}, number = {3}, year = {2004}, mrnumber = {2116818}, zbl = {1091.37008}, language = {en}, url = {http://www.numdam.org/item/AFST_2004_6_13_3_291_0/} }
TY - JOUR AU - Ecalle, Jean AU - Vallet, Bruno TI - Intertwined mappings JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2004 SP - 291 EP - 376 VL - 13 IS - 3 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://www.numdam.org/item/AFST_2004_6_13_3_291_0/ LA - en ID - AFST_2004_6_13_3_291_0 ER -
%0 Journal Article %A Ecalle, Jean %A Vallet, Bruno %T Intertwined mappings %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2004 %P 291-376 %V 13 %N 3 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://www.numdam.org/item/AFST_2004_6_13_3_291_0/ %G en %F AFST_2004_6_13_3_291_0
Ecalle, Jean; Vallet, Bruno. Intertwined mappings. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 13 (2004) no. 3, pp. 291-376. http://www.numdam.org/item/AFST_2004_6_13_3_291_0/
[Ce] Une liste de problèmes, in Ecuaciones Diferenciales , Univ. Valladolid, p. 455-460 (1997).
-[Co] Composites of translations and odd rational powers act freely. Bull. Austral. Math. Soc. 51, no. 1, 73-81 (1995). | MR | Zbl
, -[E1] Les fonctions résurgentes, Vol. 1, Algèbres de fonctions résurgentes, Publ. Math. Orsay (1981). | Zbl
-[E2] Les fonctions résurgentes, Vol.2, Les fonctions résurgentes appliquées à l'itération, Publ. Math. Orsay (1981). | Zbl
-[E3] Les fonctions résurgentes, Vol. 3, L'équation du pont et la classification analytique des objets locaux, Publ. Math. Orsay (1985). | MR | Zbl
-[E4] The acceleration operators and their applications , Proc. Internat. Cong. Math, Kyoto (1990), vol.2, Springer, Tokyo, p. 1249-1258 (1991 ). | MR | Zbl
-[E5] Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Actual. Math., Hermann, Paris (1992). | MR | Zbl
-[E6] Six Lectures on Transseries, Analysable Functions and the Constructive Proof of Dulac's Conjecture, Bifurcations and Periodic Orbits of Vector Fields, D. Schlomiuk ed., p. 75-184, Kluwer (1993). | MR | Zbl
-[E7] Cohesive functions and weak accelerations , J. Analyse Math., Szolem Mandelbrojt Memorial Volume , Vol. 60 (1993). | MR | Zbl
-[E8] Recent Advances in the Analysis of Divergence and singularities, Normal Forms and Hilbert's 16th Problem, Yu.S.Ilyashenko and C.Rousseau ed., Kluwer (2003). | MR
-[E9] A Tale of Three Structures: the Arithmetics of Multizetas, the Analysis of Singularities, the Lie algebra ARI, in: Differential Equations and the Stokes Phenomenon, eds B.L.J. Braaksma, G.K. Immink, M. van der Put, J.Top, p. 89-145, World Scient. Publ. (2002). | MR | Zbl
-[EVI] Prenormalisazation, correction, and linearization of resonant vector fields or diffeomorphisms, Prepubl. Orsay (1995).
, -[EV2] The arborication-coarborification transform: analytic and algebraic aspects, Ann. Fac. Sci. Toulouse, XIII (4), 2004. | Numdam
, -[Ep] Almost all subgroups of a Lie Group are free, J. Algebra, 19, p. 261-262 (1971). | MR | Zbl
-[F] L'équation 'sandwich', Mémoire de D.E.A. , Paris (1995).
-[G] The Ubiquity of Free Groups, The Mathematical Intelligencer, Vol. 14 n°. 3, 57 ( 1992 ). | Zbl
-[H1] VAN DER Automatic Asymptotics, Ph.D. Thesis, Ecole Polytechnique, Fr. (1997).
-[H2] A differential intermediate value theorem , Prepub. Math. Orsay, 2001. An abridged version appeared in: Differential Equations and the Stokes Phenomenon, eds B.L.J. Braaksma, G.K. Immink , M. van der Put, J.Top, p. 89-145, World Scient. Publ. (2002). | MR
-[H3] VAN DER Complex transseries solutions to algebraic differential equations, Prepub. Math. Orsay (2001).
-[LS] Combinatorial group theory, Ergebnisse 89, Springer (1977). | MR | Zbl
and -[T] Free subgroups in linear groups, J. Algebra, 20, p. 250-270 (1972). | MR | Zbl
-[W] The groups generated by x ↦ x + 1 and x ↦ xp is free, J. Algebra, 118, p. 408-422 (1988). | MR | Zbl
-