@article{AFST_1990_5_11_2_9_0, author = {Bahri, Abbas and Rabinowitz, Paul-H.}, title = {Orbites p\'eriodiques des syst\`emes hamiltoniens du type de celui des trois corps}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {9--21}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {5e s{\'e}rie, 11}, number = {2}, year = {1990}, mrnumber = {1191709}, zbl = {0731.70007}, language = {fr}, url = {http://www.numdam.org/item/AFST_1990_5_11_2_9_0/} }
TY - JOUR AU - Bahri, Abbas AU - Rabinowitz, Paul-H. TI - Orbites périodiques des systèmes hamiltoniens du type de celui des trois corps JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1990 SP - 9 EP - 21 VL - 11 IS - 2 PB - Université Paul Sabatier PP - Toulouse UR - http://www.numdam.org/item/AFST_1990_5_11_2_9_0/ LA - fr ID - AFST_1990_5_11_2_9_0 ER -
%0 Journal Article %A Bahri, Abbas %A Rabinowitz, Paul-H. %T Orbites périodiques des systèmes hamiltoniens du type de celui des trois corps %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1990 %P 9-21 %V 11 %N 2 %I Université Paul Sabatier %C Toulouse %U http://www.numdam.org/item/AFST_1990_5_11_2_9_0/ %G fr %F AFST_1990_5_11_2_9_0
Bahri, Abbas; Rabinowitz, Paul-H. Orbites périodiques des systèmes hamiltoniens du type de celui des trois corps. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 5, Volume 11 (1990) no. 2, pp. 9-21. http://www.numdam.org/item/AFST_1990_5_11_2_9_0/
[1] Les méthodes nouvelles de la Mécanique Céleste, Librairie Albert Blanchard, Paris 1987 | MR
) .-[2] On the capture orbits for the three-body problem for negative energy constant, Uspekhi Mat. Nauk, 24 (1969) pp. 185-186 | MR | Zbl
) .-Sur l'allure finale du mouvement dans le problème des trois corps, Actes du Congrès Int. des Math. 1970, 2, pp. 893-907, Gauthier-Villars, Paris 1971 | MR | Zbl
) . -[3] Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 204 (1975) pp. 113-135 | MR | Zbl
) . -[4] Critical points with lack of compactness and applications to singular Hamiltonian systems, to appear
) and ) .-[5] Periodic solutions of dynamical systems with Newtonian type potentials, in "Periodic Solutions of Hamiltonian Systems and Related Topics (P.H. Rabinowitz, et al Eds) 29, pp. 111-115, NATO ASI Series, Reidel, Dordrecht 1987 | MR | Zbl
), ) and ) .-[6] Periodic solutions of a class of singular hamiltonian systems, Nonlinear Analysis : TMA, 12 (1988) pp. 259-270 | MR | Zbl
) . -[7] Morse Theory and periodic solutions of Hamiltonian systems, Preprint, SISSA Trieste
) -[8] The homology theory of the closed geodesic problem, J. Diff. Geom., 11 (1976) pp. 633-644 | MR | Zbl
) and ) .-[9] A minimax method for a class of Hamiltonian systems with singular potentials, J. Funct. Anal., 82 (1983) pp. 412-428 | MR | Zbl
) and ) .-[10] Periodic solutions of Hamiltonian systemsof 3-body type, to appear | Numdam | MR | Zbl
) and ) .-