On Newton's method for stochastic differential equations
Séminaire de probabilités de Strasbourg, Volume 25 (1991), pp. 121-137.
@article{SPS_1991__25__121_0,
     author = {Kawabata, Shigetoku and Yamada, Toshio},
     title = {On {Newton's} method for stochastic differential equations},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {121--137},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {25},
     year = {1991},
     mrnumber = {1187776},
     zbl = {0741.60052},
     language = {en},
     url = {http://www.numdam.org/item/SPS_1991__25__121_0/}
}
TY  - JOUR
AU  - Kawabata, Shigetoku
AU  - Yamada, Toshio
TI  - On Newton's method for stochastic differential equations
JO  - Séminaire de probabilités de Strasbourg
PY  - 1991
SP  - 121
EP  - 137
VL  - 25
PB  - Springer - Lecture Notes in Mathematics
UR  - http://www.numdam.org/item/SPS_1991__25__121_0/
LA  - en
ID  - SPS_1991__25__121_0
ER  - 
%0 Journal Article
%A Kawabata, Shigetoku
%A Yamada, Toshio
%T On Newton's method for stochastic differential equations
%J Séminaire de probabilités de Strasbourg
%D 1991
%P 121-137
%V 25
%I Springer - Lecture Notes in Mathematics
%U http://www.numdam.org/item/SPS_1991__25__121_0/
%G en
%F SPS_1991__25__121_0
Kawabata, Shigetoku; Yamada, Toshio. On Newton's method for stochastic differential equations. Séminaire de probabilités de Strasbourg, Volume 25 (1991), pp. 121-137. http://www.numdam.org/item/SPS_1991__25__121_0/

1. A.T. Bharucha-Reid and M.J. Christensen, Approximate solution of random integral equations ; General methods, Math. Comput. in Simul. 26 (1984), 321-328. | MR | Zbl

2. A.T. Bharucha-Reid and R. Kannan, Newton's method for random operator equations, Nonlinear Anal. 4 (1980), 231-240. | MR | Zbl

3. S.A. Chaplygin, "Collected papers on Mechanics and Mathematics," Moscow, 1954.

4. C.T. Gard, "Introduction to Stochastic Differential Equations," Marcel Decker Inc., New York, 1988. | MR | Zbl

5. N. Ikeda and S. Watanabe, "Stochastic Differential Equations and Diffusion Processes," North-Holland - Kodansha, Amsterdam and Tokyo, 1981. | MR | Zbl

6. L.A. Kantorovich and G.P. Akilov, "Functional Analysis ( 2nd Ed. )," Pergamon Press, Oxford and New York, 1982. | MR | Zbl

7. G. Vidossich, Chaplygin's method is Newton's method, Jour. Math. Anal. Appl. 66 (1978), 188-206. | MR | Zbl