Characterization of the departure process from an ME/ME/1 queue
RAIRO - Operations Research - Recherche Opérationnelle, Tome 38 (2004) no. 2, pp. 173-191.

In this paper we propose a family of finite approximations for the departure process of an ME/ME/1 queue indexed by a parameter k defined as the system size of the finite approximation. The approximations capture the interdeparture times from an ME/ME/1 queue exactly and preserve the lag correlations of inter-event times of the departures from an ME/ME/1 queue up to lag (k-1).

@article{RO_2004__38_2_173_0,
     author = {Kumaran, Jayesh and Mitchell, Kenneth and Van de Liefvoort, Appie},
     title = {Characterization of the departure process from an ME/ME/1 queue},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {173--191},
     publisher = {EDP-Sciences},
     volume = {38},
     number = {2},
     year = {2004},
     doi = {10.1051/ro:2004018},
     zbl = {1092.90015},
     mrnumber = {2081836},
     language = {en},
     url = {www.numdam.org/item/RO_2004__38_2_173_0/}
}
Kumaran, Jayesh; Mitchell, Kenneth; Van de Liefvoort, Appie. Characterization of the departure process from an ME/ME/1 queue. RAIRO - Operations Research - Recherche Opérationnelle, Tome 38 (2004) no. 2, pp. 173-191. doi : 10.1051/ro:2004018. http://www.numdam.org/item/RO_2004__38_2_173_0/

[1] N. Akar, N. Oguz and K. Sohraby, A novel computational method for solving finite QBD processes. Commun. Stat. Stochastic Models 16 (2000) 273-311. | MR 1754432 | Zbl 0970.60079

[2] S. Asmussen and J. Møller, Calculation of the steady state waiting time distribution in GI/PH/c and MAP/PH/c queues. Queue. Syst. Theory Appl. 37 (2001) 9-29. | MR 1833658 | Zbl 0982.60096

[3] S. Asmussen and C. O'Cinneide, Representations for matrix-geometric and matrix exponential steady-state distributions with applications to many-server queues. Commun. Statist. Stochastic Models 14 (1998) 369-387. | Zbl 0934.60082

[4] J. Beran, R. Sherman, M. Taqqu and W. Willinger, Long-range dependence in variable bit rate video traffic. IEEE Trans. Commun. 43 (1995) 1566-1579.

[5] D. Berstimas and D. Nakazato, The departure process from a GI/GI/1 queue and its applications to the analysis of tandem queues. Tech. Rep. 3725-91, Sloan School of Management (1990). Working paper.

[6] G. Bolch, S. Greiner, H. De Meer and K. Trivedi, Queuing Networks and Markov Chains. A Wiley-Interscience Publication, New York, John Wiley & Sons (1998). | MR 1644321 | Zbl 1099.60002

[7] P. Burke, The output of queueing systems. Oper. Res. 699 (1956) 699-704. | MR 83416

[8] D. Daley, The correlation structure of the output process of some single server queueing systems. Ann. Math. Stat. 39 (1968) 1007-1019. | MR 224179 | Zbl 0162.49202

[9] R. Disney and P. deMorais, Covariance properties for the departure process of M/E k /1//N queues. AIIE Transactions 8 (1976) 169-175. | MR 461711

[10] E. Gelenbe, On approximate computer system models. J. ACM 22 (1975) 261-269. | MR 381028 | Zbl 0322.68035

[11] E. Gelenbe, X. Mang and Y. Feng, Diffusion cell loss estimate for ATM with multiclass bursty traffic. Int. J. Comput. Syst. Sci. Engin. 11 (1996) 325-333.

[12] E. Gelenbe and I. Mitrani, Analysis and Synthesis of Computer Systems. Academic press, London, New York (1980). | MR 696380 | Zbl 0484.68026

[13] E. Gelenbe and G. Pujolle, The behaviour of a single queue in a general queueing network. Acta Informatica 7 (1976/77) 123-136. | MR 433635 | Zbl 0349.60091

[14] E. Gelenbe and G. Pujolle, A diffusion model for multiple class queueing networks, in Measuring, Modelling and Evaluating Computer Systems, Proc. of the Third International Symposium, Bonn - Bad Godesberg, Germany, edited by H. Beilner and H. Gelenbe. North-Holland (1977) 189-199

[15] M. Girish and J.-Q. Hu, Approximations for the departure process of a GI/GI/1 queue with Markov-modulated arrivals. Eur. J. Oper. Res. 134 (2001) 540-556. | MR 1853763 | Zbl 0989.60094

[16] D. Green, Departure Process from MAP/PH/1 Queues. Ph.D. Thesis, The University of Adelaide, Department of Applied Mathematics (1999).

[17] A. Heindl, Traffic-Based Decomposition of General Queueing Networks with Correlated Input Processes. Ph.D. Thesis, Technical University, Berlin (2001). | Zbl 1116.68367

[18] J.-Q. Hu, The departure process of a GI/GI/1 queue and its MacLaurin series. Oper. Res. 44 (1996) 810-815. | Zbl 0879.60103

[19] A. Ishikawa, On the joint distribution of the departure intervals in an M/G/1//N queue. J. Oper. Res. Soc. Japan 34 (1991) 422-435. | MR 1156187 | Zbl 0754.60111

[20] R. King, The covariance structure of the departure process from M/G/1 queues with finite waiting lines. J. R. Stat. Soc. 33 (1982) 401-405. | MR 317440 | Zbl 0234.60113

[21] P. Kühn, Approximation analysis of general queueing networks by decomposition. IEEE Trans. Commun. COM-27 (1979) 113-126.

[22] J. Kumaran, Ph.D. Thesis, University of Missouri-Kansas city, School of Computing Engineering. Forthcoming.

[23] G. Latouche and V. Ramaswami, A logarithmic reduction algorithm for quasi-birth-death process. J. Appl. Probab. 30 (1993) 650-674. | MR 1232742 | Zbl 0789.60055

[24] Y. Lee, A. Van De Liefvoort and V. Wallace, Modeling correlated traffic with a generalized IPP. Perform. Eval. 40 (2000) 99-114. | Zbl 1052.68560

[25] A. Van De Liefvoort, The waiting time distribution and its moments of the PH/PH/1 queue. Oper. Res. Lett. 9 (1990) 261-269. | MR 1071459 | Zbl 0705.60086

[26] M. Linvy, B. Melamed and A. Tsiolis, The impact of autocorrelation on queueing systems. Manage. Sci. 39 (1993) 332-339. | Zbl 0825.90410

[27] L. Lipsky, Queueing Theory: A Linear Algebraic Approach. New York, MacMillan (1992). | Zbl pre05223064

[28] L. Lipsky, P. Fiorini, W. Hsin and A. Van De Liefvoort, Auto-correlation of lag-k for customers departing from semi-Markov processes. Tech. Rep. TUM-19506, Technical University Munich (1995).

[29] K. Mitchell and A. Van De Liefvoort, Approximation models of feed-forward queueing networks with correlated arrivals. Perform. Eval. 51 (2003) 137-152.

[30] K. Mitchell, A. Van De Liefvoort and J. Place, Second-order statistics of an isolated departure stream from a shared buffer with correlated sources, in Proc. of the Eighth International Conference on Telecommunication Systems Modeling and Analysis, March (2000) 565-574.

[31] P. Pancha and M. Zarki, Variable bit rate video transmission. IEEE Communications 32 (1994) 54-66.

[32] B. Patuwo, R. Disney and D. Mcnickle, The effect of correlated arrivals on queues. IIE Transactions 25 (1993) 105-110.

[33] D. Reininger, B. Melamed and D. Raychaudhuri, Variable bit rate MPEG video: Characteristics, modeling and multiplexing, in Proc. of the Fourteenth International Teletraffic Congress 1 (1994) 295-306.

[34] R. Sadre and B. Haverkort, Characterising traffic streams in networks of MAP/MAP/1 queues, in Proc. of the Eleventh GI/ITG, Conference on Measuring Modelling and Evaluation of Computer Communication Systems (2001) 195-208.

[35] W. Whitt, Approximating a point process by a renewal process I: Two basic methods. Oper. Res. 30 (1982) 125-147. | MR 647405 | Zbl 0481.90025

[36] W. Whitt, The queueing network analyzer. Bell System Technical J. 62 (1983) 2799-2815.

[37] W. Whitt, Approximations for departure processes and queues in series. Naval Research Logistics Quarterly 31 (1984) 499-521. | MR 767051 | Zbl 0563.60094