On a conservation upwind finite element scheme for convective diffusion equations
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 15 (1981) no. 1, p. 3-25
@article{M2AN_1981__15_1_3_0,
     author = {Baba, Kinji and Tabata, Masahisa},
     title = {On a conservation upwind finite element scheme for convective diffusion equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {15},
     number = {1},
     year = {1981},
     pages = {3-25},
     zbl = {0466.76090},
     mrnumber = {610595},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1981__15_1_3_0}
}
Baba, Kinji; Tabata, Masahisa. On a conservation upwind finite element scheme for convective diffusion equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 15 (1981) no. 1, pp. 3-25. http://www.numdam.org/item/M2AN_1981__15_1_3_0/

1. K. Baba and S. Yoshii, An upwind scheme for convective diffusion equation by finite element method, Proceedings of VIIIth International Congress on Application of Mathematics in Engineering, Weimar/DDR, 1978. | Zbl 0386.76067

2. J. H. Bramble and S. R. Hilbert, Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math., 16 (1971), 362-369. | MR 290524 | Zbl 0214.41405

3. P. G. Ciarlet and P. A. Raviart, General Lagrange and Hermite interpolationin Rn with applications to finite element methods, Arch. Rational Mech. AnaL,46 (1971), 177-199. | MR 336957 | Zbl 0243.41004

4. P. G. Ciarlet and P. A. Raviart, Maximum principle and uniform convergence for the finite element method, Computer Methods in Applied Mechanics and Engineering, 2 (1973), 17-31. | MR 375802 | Zbl 0251.65069

5. H. Fujii, Some remarks on finite element analysis of time-dependent field problems,Theory and practice in finite element structural analysis, ed. by Yamada, Y. and Gallagher, R. H., 91-106, Univ. of Tokyo Press, Tokyo, 1973. | Zbl 0373.65047

6. R. Gorenflo, Energy conserving discretizations of diffusion equations, Paper submitted for publication in the Proceedings of the Conference on Numerical Methods in Keszthely/Hungary, 1977. | Zbl 0466.76086

7. F. C. Heinrich, P. S. Huyakorn, O. C. Zienkiewicz and A. R. Mitchell, An " upwind "finite element scheme for two dimensional convective-transport equation,Int. J. Num. Meth. Engng., 11 (1977), 131-143. | Zbl 0353.65065

8. F. C. Heinrich and O. C. Zienkiewicz, The finite element method and " upwinding " techniques in the numerical solution of confection dominated flow problems, Preprint for the ASME winter annual meeting on fini te element methods for convection dominated flows, 1979. | Zbl 0436.76062

9. T. Ikeda, Artificial viscosity infinite element approximations to the diffusion equation with drift terms, to appear in Lecture Notes in Num. Appl. Anal., 2. | Zbl 0468.76087

10. H. Kanayama, Discrete models for salinity distribution in a bay-Conservation law and maximum principle, to appear in Theoretical and Applied Mechanics, 28.

11. F. Kikuchi, The discrete maximum principle and artificial viscosity in finite element approximations to convective diffusion equations, Institute of Space and Aeronautical Science, University of Tokyo, Report n° 550 (1977).

12. M. Tabata, A finite element approximation corresponding to the upwind finite differencing, Memoirs of Numerical Mathematics, 4 (1977), 47-63. | MR 448957 | Zbl 0358.65102

13. M. Tabata, Uniform convergence of the upwind finite element approximation for semilinear parabolic problems, J. Math. Kyoto Univ., 18 (1978), 327-351. | MR 495024 | Zbl 0391.65038

14. M. Tabata, L -analysis of the finite element method, Lecture Notes in Num. Appl. Anal, 1 (1979) 25-62, Kinokuniya, Tokyo. | MR 690436 | Zbl 0458.65096

15. M. Tabata, Some applications of the upwind finite element method, Theoretical and Applied Mechanics, 27 (1979), 277-282, Univ. of Tokyo Press, Tokyo.