Large time behaviour of heat kernels on non-compact manifolds : fast and slow decays
Journées équations aux dérivées partielles (1998), article no. 2, 12 p.

In this talk we shall present some joint work with A. Grigory’an. Upper and lower estimates on the rate of decay of the heat kernel on a complete non-compact riemannian manifold have recently been obtained in terms of the geometry at infinity of the manifold, more precisely in terms of a kind of L 2 isoperimetric profile. The main point is to connect the decay of the L 1 -L norm of the heat semigroup with some adapted Nash or Faber-Krahn inequalities, which is done by functional analytic methods. We shall give an outline of these results and show how they can give some answers to the following question: given the volume growth of a manifold, e.g. polynomial or exponential, how fast and how slow can the heat kernel decay be?

@article{JEDP_1998____A2_0,
     author = {Coulhon, Thierry},
     title = {Large time behaviour of heat kernels on non-compact manifolds : fast and slow decays},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {2},
     publisher = {Universit\'e de Nantes},
     year = {1998},
     zbl = {01808712},
     language = {en},
     url = {http://www.numdam.org/item/JEDP_1998____A2_0/}
}
TY  - JOUR
AU  - Coulhon, Thierry
TI  - Large time behaviour of heat kernels on non-compact manifolds : fast and slow decays
JO  - Journées équations aux dérivées partielles
PY  - 1998
DA  - 1998///
PB  - Université de Nantes
UR  - http://www.numdam.org/item/JEDP_1998____A2_0/
UR  - https://zbmath.org/?q=an%3A01808712
LA  - en
ID  - JEDP_1998____A2_0
ER  - 
Coulhon, Thierry. Large time behaviour of heat kernels on non-compact manifolds : fast and slow decays. Journées équations aux dérivées partielles (1998), article  no. 2, 12 p. http://www.numdam.org/item/JEDP_1998____A2_0/

[1] Bakry D., Coulhon T., Ledoux M., Saloff-Coste L., Sobolev inequalities in disguise, Indiana Univ. Math. J., 44, 4, 1033-1074, 1995. | MR 97c:46039 | Zbl 0857.26006

[2] Carron G., Inégalités isopérimétriques sur les variétés riemanniennes. Thesis, University of Grenoble, 1994.

[3] Carron G., Inégalités isopérimétriques de Faber-Krahn et conséquences, in Actes de la table ronde de géométrie différentielle en l'honneur de Marcel Berger, Collection SMF Séminaires et congrès, no 1, 205-232, 1994. | MR 97m:58198 | Zbl 0884.58088

[4] Coulhon T., Dimensions at infinity for Riemannian manifolds, Potential Anal., 4, 4, 335-344, 1995. | MR 96i:53040 | Zbl 0847.53022

[5] Coulhon T., Espaces de Lipschitz et inégalités de Poincaré, J. Funct. Anal., 136, 1, 81-113, 1996. | MR 97a:46040 | Zbl 0859.58009

[6] Coulhon T., Ultracontractivity and Nash type inequalities, J. Funct. Anal., 141, 2, 510-539, 1996. | MR 97j:47055 | Zbl 0887.58009

[7] Coulhon T., Heat kernels on non-compact Riemannian manifolds : a partial survey, Séminaire de théorie spectrale et géométrie, 15 (1996-1997), Institut Fourier, 167-187, 1998. | Numdam | MR 99e:58175 | Zbl 0903.58055

[8] Coulhon T., Analysis on graphs with regular volume growth, to appear in Proceedings of the 1997 Cortona conference on Random walks and discrete potential theory, Cambridge U.P.

[9] Coulhon T., Grigor'Yan A., On-diagonal lower bounds for heat kernels on non-compact Riemannian manifolds, Duke Math. J., 89, 1, 133-199, 1997. | MR 98e:58159 | Zbl 0920.58064

[10] Coulhon T., Grigor'Yan A., Manifolds with big heat kernels, preprint.

[11] Coulhon T., Ledoux M., Isopérimétrie, décroissance du noyau de la chaleur et transformations de Riesz : un contre-exemple, Arkiv för Mat., 32, 63-77, 1994. | MR 95e:58170 | Zbl 0826.53035

[12] Coulhon T., Saloff-Coste L., Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamer., 9, 2, 293-314, 1993. | EuDML 39439 | MR 94g:58263 | Zbl 0782.53066

[13] Coulhon T., Saloff-Coste L., Variétés riemanniennes isométriques à l'infini, Rev. Mat. Iberoamer., 11, 3, 687-726, 1995. | EuDML 39498 | MR 96m:53035 | Zbl 0845.58054

[14] Coulhon T., Saloff-Coste L., Harnack inequality and hyperbolicity for the p- Laplacian with applications to Picard type theorems, preprint. | Zbl 01718931

[15] Grigor'Yan A., The heat equation on non-compact Riemannian manifolds, in Russian : Matem. Sbornik, 182, 1, 55-87, 1991 ; English translation : Math. USSR Sb., 72, 1, 47-77, 1992. | MR 92h:58189 | Zbl 0776.58035

[16] Grigor'Yan A., Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoamericana, 10, 2, 395-452, 1994. | EuDML 39447 | MR 96b:58107 | Zbl 0810.58040

[17] Grigor'Yan A., Heat kernel on a non-compact Riemannian manifold, in 1993 Summer research institute on stochastic analysis, ed. M. Pinsky et alia, Proceedings of Symposia in Pure Math., 57, 239-263, 1994. | MR 96f:58155 | Zbl 0829.58041

[18] Pittet C., Saloff-Coste L., Amenable groups, isoperimetric profiles, and random walks, in Proceedings of the 1996 Canberra Geometric group theory conference, 1997. | Zbl 0934.43001