A Γ-convergence result for variational integrators of lagrangians with quadratic growth
ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 4, pp. 656-665.

Following the Γ-convergence approach introduced by Müller and Ortiz, the convergence of discrete dynamics for lagrangians with quadratic behavior is established.

DOI : https://doi.org/10.1051/cocv:2004025
Classification : 37M15,  49J45
Mots clés : discrete dynamics, variational integrators, gamma-convergence
@article{COCV_2004__10_4_656_0,
     author = {Maggi, Francesco and Morini, Massimiliano},
     title = {A $\Gamma $-convergence result for variational integrators of lagrangians with quadratic growth},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {656--665},
     publisher = {EDP-Sciences},
     volume = {10},
     number = {4},
     year = {2004},
     doi = {10.1051/cocv:2004025},
     zbl = {1099.37064},
     mrnumber = {2111086},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2004025/}
}
Maggi, Francesco; Morini, Massimiliano. A $\Gamma $-convergence result for variational integrators of lagrangians with quadratic growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 4, pp. 656-665. doi : 10.1051/cocv:2004025. http://www.numdam.org/articles/10.1051/cocv:2004025/

[1] E. De Giorgi, Teoremi di semicontinuitá nel Calcolo delle Variazioni. Istituto Nazionale di Alta Matematica (1968-1969).

[2] A.D. Ioffe, On lower semicontinuity of integral functionals. I. SIAM J. Control Optim. 15 (1977) 521-538. | MR 637234 | Zbl 0361.46037

[3] E.J. Marsden and M. West, Discrete Mechanics and variational integrators. Acta Numerica 10 (2001) 357-514. | MR 2009697 | Zbl 1123.37327

[4] S. Müller and M. Ortiz, On the Γ-convergence of discrete dynamics and variational integrators. J. Nonlinear Sci. 14 (2004) 279-296. | MR 2061537 | Zbl 1136.37350