The asymptotic behaviour of surfaces with prescribed mean curvature near meeting points of fixed and free boundaries
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 6 (2007) no. 4, p. 529-559

We study the shape of stationary surfaces with prescribed mean curvature in the Euclidean 3-space near boundary points where Plateau boundaries meet free boundaries. In deriving asymptotic expansions at such points, we generalize known results about minimal surfaces due to G. Dziuk. The main difficulties arise from the fact that, contrary to minimal surfaces, surfaces with prescribed mean curvature do not meet the support manifold perpendicularly along their free boundary, in general.

Classification:  53A10,  35C20,  35R35,  49Q05
@article{ASNSP_2007_5_6_4_529_0,
     author = {M\"uller, Frank},
     title = {The asymptotic behaviour of surfaces with prescribed mean curvature near meeting points of fixed and free boundaries},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 6},
     number = {4},
     year = {2007},
     pages = {529-559},
     zbl = {1171.53302},
     mrnumber = {2394410},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2007_5_6_4_529_0}
}
Müller, Frank. The asymptotic behaviour of surfaces with prescribed mean curvature near meeting points of fixed and free boundaries. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 6 (2007) no. 4, pp. 529-559. http://www.numdam.org/item/ASNSP_2007_5_6_4_529_0/

[1] U. Dierkes, S. Hildebrandt, A. Küster and O. Wohlrab, “Minimal Surfaces I, II", Grundlehren Math. Wiss. Vol. 295, 296. Springer, Berlin Heidelberg New York, 1992. | MR 1215267 | Zbl 0777.53012

[2] G. Dziuk, Über quasilineare elliptische Systeme mit isothermen Parametern an Ecken der Randkurve, Analysis 1 (1981), 63-81. | MR 623643 | Zbl 0485.35012

[3] G. Dziuk, On the boundary behaviour of partially free minimal surfaces, Manuscripta Math. 35 (1981), 105-123. | MR 627928 | Zbl 0477.49024

[4] K. Goldhorn and S. Hildebrandt, Zum Randverhalten der Lösungen gewisser zweidimensionaler Variationsprobleme mit freien Randbedingungen, Math. Z. 118 (1970), 241-253. | MR 279699 | Zbl 0202.20502

[5] P. Hartman and A. Wintner, On the local behavior of solutions of nonparabolic partial differential equations, Amer. J. Math. 75 (1953), 449-476. | MR 58082 | Zbl 0052.32201

[6] E. Heinz, Über das Randverhalten quasilinearer elliptischer Systeme mit isothermen Parametern, Math. Z. 113 (1970), 99-105. | MR 262683 | Zbl 0176.41004

[7] E. Heinz, Über die analytische Abhängigkeit der Lösungen eines linearen elliptischen Randwertproblems von Parametern, Nachr. Akad. Wiss. Göttingen II, Math.-Phys. Kl. (1979), 1-20. | MR 568799 | Zbl 0436.35010

[8] S. Hildebrandt, Einige Bemerkungen über Flächen beschränkter mittlerer Krümmung,- Math. Z. 115 (1970), 169-178. | MR 266115 | Zbl 0185.50201

[9] F. Müller, A priori bounds for H-surfaces in a partially free configuration, Analysis 26 (2006), 471-489. | MR 2329588 | Zbl 1133.53006

[10] F. Müller, Investigations on the regularity of surfaces with prescribed mean curvature and partially free boundaries, Habilitationsschrift, BTU Cottbus (2006).

[11] F. Müller, On the regularity of H-surfaces with free boundaries on a smooth support manifold, BTU Cottbus (2007), preprint. | Zbl 1161.53011

[12] F. Müller, Growth estimates for the gradient of an H-surface near singular points of the boundary configuration, Z. Anal. Anwendungen, to appear. | MR 2469718 | Zbl 1167.53012

[13] J. C. C. Nitsche, Minimal surfaces with partially free boundary. Least area property and Hölder continuity for boundaries satisfying a chord-arc condition, Arch. Ration. Mech. Anal. 39 (1970), 131-145. | MR 266068 | Zbl 0209.41602

[14] F. Sauvigny, “Partial Differential Equations 1: Foundations and Integral Representations", Springer, Berlin Heidelberg, 2006. | MR 2254749 | Zbl 1198.35001

[15] F. Sauvigny, “Partial Differential Equations 2: Functional Analytic Methods", Springer, Berlin Heidelberg, 2006. | MR 2254750 | Zbl 1198.35002