All polynomials of binomial type are represented by Abel polynomials
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 25 (1997) no. 3-4, p. 731-738
@article{ASNSP_1997_4_25_3-4_731_0,
     author = {Rota, Gian-Carlo and Shen, Jianhong and Taylor, Brian D.},
     title = {All polynomials of binomial type are represented by Abel polynomials},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 25},
     number = {3-4},
     year = {1997},
     pages = {731-738},
     zbl = {1003.05011},
     mrnumber = {1655539},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1997_4_25_3-4_731_0}
}
Rota, Gian-Carlo; Shen, Jianhong; Taylor, Brian D. All polynomials of binomial type are represented by Abel polynomials. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 25 (1997) no. 3-4, pp. 731-738. http://www.numdam.org/item/ASNSP_1997_4_25_3-4_731_0/

[1] N. Ray, All binomial sequences are factorial, unpublished manuscript.

[2] S. Roman - G.-C. Rota, The umbral calculus, Adv. Math. 27 (1978), 95-188. | MR 485417 | Zbl 0375.05007

[3] G.-C. Rota - D. Kahaner - A. Odlyzko, Finite operator calculus, J. Math. Anal. Appl. 42 (1973), 685-760. | MR 345826 | Zbl 0267.05004

[4] G.-C. Rota - B.D. Taylor, An introduction to the umbral calculus, in Analysis, Geometry and Groups: A Riemann Legacy Volume Hadronic Press, Palm Harbor, FL, 1993, 513-525. | MR 1299353 | Zbl 0910.05010

[5] G.-C. Rota - B.D. Taylor, The classical umbral calculus, SIAM J. Math. Anal. 25 (1994), 694-711. | MR 1266584 | Zbl 0797.05006

[6] B.D. Taylor, Difference equations via the classical umbral calculus, in Proceedings of the Rotafest and Umbral Calculus Workshop Birkhauser, Boston, to appear. | MR 1627386 | Zbl 0903.05007