@article{ASNSP_1997_4_25_3-4_713_0,
author = {M\"uller, Stefan and Struwe, Michael and \v{S}ver\'ak, Vladimir},
title = {Harmonic maps on planar lattices},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {713--730},
year = {1997},
publisher = {Scuola normale superiore},
volume = {Ser. 4, 25},
number = {3-4},
mrnumber = {1655538},
zbl = {1004.58007},
language = {en},
url = {https://www.numdam.org/item/ASNSP_1997_4_25_3-4_713_0/}
}
TY - JOUR AU - Müller, Stefan AU - Struwe, Michael AU - Šverák, Vladimir TI - Harmonic maps on planar lattices JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1997 SP - 713 EP - 730 VL - 25 IS - 3-4 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_1997_4_25_3-4_713_0/ LA - en ID - ASNSP_1997_4_25_3-4_713_0 ER -
%0 Journal Article %A Müller, Stefan %A Struwe, Michael %A Šverák, Vladimir %T Harmonic maps on planar lattices %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1997 %P 713-730 %V 25 %N 3-4 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_1997_4_25_3-4_713_0/ %G en %F ASNSP_1997_4_25_3-4_713_0
Müller, Stefan; Struwe, Michael; Šverák, Vladimir. Harmonic maps on planar lattices. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 25 (1997) no. 3-4, pp. 713-730. https://www.numdam.org/item/ASNSP_1997_4_25_3-4_713_0/
[1] , Weak convergence of Palais-Smale sequences for some critical functionals, Calc. Var. 1 (1993), 267-310. | Zbl | MR
[2] , On the singular set of stationary harmonic maps, Manusc. Math. 78 (1993), 417-443. | Zbl | MR
[3] - - - , Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993), 247-286. | Zbl | MR
[4] - , On the regularity of spherically symmetric wave maps, Comm. Pure Appl. Math. 46 (1993), 1041-1091. | Zbl | MR
[5] , Partial regularity for stationary harmonic maps into spheres, Arch. Rat. Mech. Anal. 116 (1991), 101-113. | Zbl | MR
[6] - , Hp spaces of several variables, Acta Math. 129 (1972), 137-193. | Zbl | MR
[7] - - , Weak Convergence of Wave Maps from (1 +2)-Dimensional Minkowski Space to Riemannian Manifolds, Invent. Math. (to appear). | Zbl | MR
[8] - - , Weak Compactness of Wave Maps and Harmonic Maps, preprint (1996).
[9] , Regularité des applications faiblement harmoniques entre une surface et une variteé Riemannienne, C. R. Acad. Sci. Paris Ser. I Math. 312 (1991), 591-596. | Zbl | MR
[10] , The concentration compactness principle in the calculus of variations, the limit case, part II, Rev. Mat. Iberoam. 12 (1985), 45-121. | Zbl | MR
[11] - , Global Existence of Wave Maps in 1 + 2 Dimensions for Finite Energy Data, Top. Methods Nonlinear Analysis, 7 (1996), 245-259. | Zbl | MR
[12] - , Spatially Discrete Wave Maps in 1+2 Dimensions, in preparation.






