Uncertainty principles associated to non-degenerate quadratic forms  [ Principes d’incertitude associés à des formes quadratiques non dégénérées ] (2009)


Demange, Bruno
Mémoires de la Société Mathématique de France, Tome 119 (2009) 96 p
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consulter l'article sur le site de la revue
doi : 10.24033/msmf.431
URL stable : http://www.numdam.org/item?id=MSMF_2009_2_119__1_0

Bibliographie

[1] W. O. Amrein & A. M. Berthier« On support properties of L p -functions and their Fourier transforms », J. Functional Analysis 24 (1977), p. 258–267. Zbl 0355.42015 | MR 461025

[2] L. Auslander & R. Tolimieri« Radar ambiguity functions and group theory », SIAM J. Math. Anal. 16 (1985), p. 577–601. Zbl 0581.43002 | MR 783983

[3] V. Bargmann« On a Hilbert space of analytic functions and an associated integral transform », Comm. Pure Appl. Math. 14 (1961), p. 187–214. Zbl 0107.09102 | MR 157250

[4] —, « On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory », Comm. Pure Appl. Math. 20 (1967), p. 1–101. Zbl 0149.09601 | MR 201959

[5] M. Benedicks« On Fourier transforms of functions supported on sets of finite Lebesgue measure », J. Math. Anal. Appl. 106 (1985), p. 180–183. Zbl 0576.42016 | MR 780328

[6] A. Bonami & B. Demange« A survey on the uncertainty principles for quadratic forms », compte-rendu de conférence.

[7] A. Bonami, B. Demange & P. Jaming« Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms », Rev. Mat. Iberoamericana 19 (2003), p. 23–55. Zbl 1037.42010 | | MR 1993414

[8] R. De Buda« Signals that can be calculated from their ambiguity function », IEEE Trans. Information Theory IT-16 (1970), p. 195–202. Zbl 0192.56604 | MR 280253

[9] R. Coifman & G. WeissAnalyse harmonique non commutative sur certains espaces homogènes, Lecture Notes in Math., vol. 242. Zbl 0224.43006 | MR 499948

[10] M. Cowling & J. F. Price« Generalisations of Heisenberg’s inequality », in Harmonic analysis (Cortona, 1982), Lecture Notes in Math., vol. 992, Springer, 1983, p. 443–449. Zbl 0516.43002 | MR 729369

[11] B. Demange« Uncertainty principles for the ambiguity function ». Zbl 1090.42004

[12] G. B. FollandHarmonic analysis in phase space, Annals of Math. Studies, vol. 122, Princeton Univ. Press, 1989. Zbl 0682.43001 | MR 983366

[13] G. H. Hardy« A theorem concerning Fourier transforms », J. London Math. Soc. 8 (1933), p. 227–231. Zbl 59.0425.01 | MR 1574130

[14] V. Havin & B. JörickeThe uncertainty principle in harmonic analysis, Ergebnisse Math. Grenzg., vol. 28, Springer, 1994. Zbl 0827.42001 | MR 1303780

[15] L. HörmanderThe analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, Springer, 1983. MR 705278

[16] —, « A uniqueness theorem of Beurling for Fourier transform pairs », Ark. Mat. 29 (1991), p. 237–240. Zbl 0755.42009 | MR 1150375

[17] A. J. E. M. Janssen & S. J. L. Van Eijndhoven« Spaces of type W, growth of Hermite coefficients, Wigner distribution, and Bargmann transform », J. Math. Anal. Appl. 152 (1990), p. 368–390. Zbl 0749.46027 | MR 1077934

[18] B. J. LevinDistribution of zeros of entire functions, revised éd., Translations of Mathematical Monographs, vol. 5, Amer. Math. Soc., 1980. MR 589888

[19] N. Lindholm« A Paley-Wiener theorem for convex sets in n », Bull. Sci. Math. 126 (2002), p. 289–314. Zbl 1009.32003 | MR 1909462

[20] V. I. Lutsenko & R. S. Yulmukhametov« Generalizations of the Wiener-Paley theorem to functionals in Smirnov spaces », Trudy Mat. Inst. Steklov. 200 (1991), p. 245–254. MR 1143373

[21] Y. I. Lyubarskiĭ« The Paley-Wiener theorem for convex sets », Izv. Akad. Nauk Armyan. SSR Ser. Mat. 23 (1988), p. 163–172, 194. MR 976299

[22] G. W. Morgan« A note on Fourier transforms », J. London Math. Soc. 9 (1934). Zbl 60.0348.01 | MR 1574180

[23] F. L. Nazarov« Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type », Algebra i Analiz 5 (1993), p. 3–66, translated in St. Petersburg Math. J. 5 no. 4 (1994), p. 663–717.

[24] L. SchwartzThéorie des distributions, Hermann, 1966. MR 209834

[25] C. Shubin, R. Vakilian & T. Wolff« Some harmonic analysis questions suggested by Anderson-Bernoulli models », Geom. Funct. Anal. 8 (1998), p. 932–964. Zbl 0920.42005 | MR 1650106

[26] E. M. SteinTopics in harmonic analysis related to the Littlewood-Paley theory., Annals of Math. Studies, No. 63, Princeton Univ. Press, 1970. Zbl 0193.10502 | MR 252961

[27] Titchmarsh – Theory of functions, Oxford Univ. Press, 1932. MR 3155290

[28] E. Wilczok« New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform », Doc. Math. 5 (2000), p. 201–226. Zbl 0947.42024 | | MR 1758876