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UNCERTAINTY PRINCIPLES ASSOCIATED TO
NON-DEGENERATE QUADRATIC FORMS

Bruno Demange

Abstract. Ð This volume is devoted to several generalisations of the classical Hardy
uncertainty principle on Euclidian spaces. Instead of comparing functions and their
Fourier transforms a Gaussian, we compare them to the exponential of general non-
degenerate quadratic forms, like for example the Lorentz form. Using the Bargmann
transform, we translate the problem into the description of several classes of analytic
functions of several variables, and at the same time simplify and unify proofs of results
presented in several previous papers.

RŽsumŽ(Principes dÕincertitude associŽs ˆ des formes quadratiques non dŽgŽnŽrŽes)
Ce volume est consacrŽ a des gŽneralisations du principe dÕincertitude classique de

Hardy dans les espaces Euclidiens. Au lieu de comparer les fonctions ˆ des gaussi-
ennes, nous les comparons a lÕexponentielle de formes quadratiques non dŽgŽnŽrŽes,
par exemple ˆ la forme de Lorentz. Nous transformons ces probl•mes ˆ lÕaide de la
transformŽe de Bargmann, en des probl•mes de description de certaines classes de
fonctions enti•res de plusieurs variables. Ces mŽthode amŽliorent et simpliÞent des
rŽsultats publiŽs dans des travaux prŽcŽdents.
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INTRODUCTION

This volume concerns certain forms of the uncertainty principle in harmonic anal-
ysis. The uncertainty principle is a general term for theorems that show that if a
function f on Rd and its Fourier transform !f approximate g and !g, then they must
be equal.

The history of the uncertainty principle goes back to Heisenberg inequality of
quantum mechanics, namely

"
|x|2| !f (x)|2 dx "

"
|! |2| !f (! )|2 d! !

d2

16" 2 #f #4
L 2 ,

where d is the dimension, and !f (y) =
#

f (x) exp($ 2i"xy ) dx. This inequality is well
known as the fact that the product of uncertainties of the position and the momentum
is bounded below by an explicit constant, that involves the Planck constant. Equality
occurs only for the Gaussian functionsf (x) = C exp($ t|x|2), t > 0.

The Hardy uncertainty principle [ 13] precised this unique property of Gaussian
functions: if # is a Gaussian function, there is no functionf such that |f | % # and
| !f | % !#, except for the function # itself (or its multiples). Variants of this results were
proved by Morgan [22], Cowling-Price [10], not to mention the work that has been
done on Lie Groups. This was illustrated more recently by a lost result of Beurling [16]:

"

R
|f (x)|| !f (y)| exp(2" |xy|) dx dy < &

implies that f = 0 , while Gaussian functions make this integral Þnite when2" is
replaced by a smaller constant. This has been completed in [7], and one actually has,
as a corollary, the following version of Hardy uncertainty principle: if

|f (x) !f (y)| % exp($ 2" |xy|)

then f is a Gaussian function. In this example, we see that we can ask functions to
decrease exponentially in some directions, and not in other, and still get an uncertainty
principle.

This paper is essentially about the study of functions satisfying estimates of the
form

(0.1) |f (x)| % exp($ " |q(x)|), | !f (! )| % exp($ " |q!(! )|),

SOCIƒTƒ MATHƒMATIQUE DE FRANCE 2009



8 INTRODUCTION

where q and q! are two quadratic forms. We ask for an exponential decrease in some
directions, but not in regions close to the isotropic sets of the forms, where they
vanish. The classical Hardy uncertainty principle corresponds to positive quadratic
forms. Take for example as previously the case of quadratic forms onR2 deÞned by
q(x, y) = 2 xy and q!(!, $ ) = 2 !$ . We ask for

(0.2) |f (x, y)| % exp($ 2" |xy|), | !f (!, $ )| % exp($ 2" |!$ |).

Here q and q! are not positive, and we cannot expect solutions to be integrable. Take
for example

f (x, y) = sgn(x) exp($ 2" |xy|).

It is not in any L p space exceptL " . However, in the distribution sense, we have

!f (!, $ ) = $ isgn(! ) exp($ 2" |!$ |),

so that (0.2) is satisÞed.

We see with this example that studying solutions of (0.1) requires to work on the
level of distribution. In this setting, ( 0.1) can be rewritten in the following: study
distributions f in the Schwartz spaceS! so that

(0.3) f (á) exp(± "q (á)) ' S!, !f (á) exp(± "q !(á)) ' S!.

When q and q! are both positive quadratic forms, this corresponds to the classical
Hardy uncertainty principle, except that it is stated in a distributional setting. In the
simplest case, the conditions are

(0.4) f (á) exp(" | á |2) ' S!, !f (á) exp(" | á |2) ' S!.

To solve this problem, we had to work with more regular objects than distributions.
We do this using the Bargmann transform, which is essentially a convolution with
a Gaussian function. If f is a tempered distribution, its Bargmann transform is the
entire function deÞned by

B(f )(z) = exp
$"

2
z2%

f % #(z),

where #(x) = exp( $ " |x|2). It has been introduced by Bargmann in [3, 4].

We already used the Bargmann transform in [7], even if not explicitly. There we
studied functions satisfying Beurling type conditions, of the form

(0.5) (1 + |x| + |y|)# N f (x) !f (y) exp(2" |xy|) ' L 1.

Even if it was the scheme of HšrmanderÕs proof for Beurling theorem, regularity off
is not a direct consequence of (0.5), while HardyÕs conditions imply directly that f
extends to an entire function of order 2. Our trick was to convolve f with #. Sincef
has to be a Hermite function, so doesg = f % #. We showed that the new function g
satisÞes also (0.5). This is the Bargmann transform of f , up to a factor.

MƒMOIRES DE LA SMF 119



INTRODUCTION 9

We go back to (0.4). We show in the Þrst chapter that f is necessarily a Hermite
function, namely f (x) = P(x) exp($ " |x|2), whereP is a polynomial. Equivalently, we
prove that the Bargmann transform of f is a polynomial. This is done in two stages.
First we show that (0.4) is equivalent to an estimate on the Bargmann transform of
f . Then we conclude using a version of Phragm•n-Lindelšf principle. This is a scheme
for all our proofs. This distributional version of Hardy uncertainty principle allows
to recover known variants, including the result of Cowling-Price [10]. We exploit the
Bargmann transform to have a distributional version of other uncertainty principles,
including the one of Morgan, Beurling (generalizing the results of [7]), as well as
directional uncertainty principle, mainly in one dimension, where conditions are stated
only on the positive numbers axis for example. Let us mention, in this context, a
characterization of Bargmann transforms of distributions which are tempered on one
side.

When q(x) = a|x|2, q!(! ) = b|! |2, with ab > 1 it follows that there are no solution
for ab > 1, there are only Gaussian or Hermite solutions whenab= 1 . The case when
ab < 1 had partially been studied before (see for example [17]). We give here the
structure of the distributions satisfying

f (á) exp("a | á |2) ' S!, !f (á) exp("b| á |2) ' S!, ab < 1,

which are actually the members of a space of Gelfand and Shilov. Many Gaussian
functions satisfy these estimates, including complex Gaussian functions, and it is
easy to characterize them. We show that any other distribution with this property is
an average of such Gaussian functions.

This is actually a phenomenon that will happen through the whole paper when
considering other pairs of quadratic forms. We will study in general the spaceG(q, q!)
of tempered distributions f satisfying (0.3), given two quadratic forms, that we assume
to be non degenerated. As for the case of positive forms, three cases will occur.
When there are no Gaussian elements, we call the pair(q, q!) a super-critical pair. We
expect then G(q, q!) to be small in some sense. We give su!cient conditions so that
G(q, q!) = { 0} , and so that it does not contain certain classes of integrable functions.
When there are non-real Gaussian elements, we call the pair sub-critical, and critical
in the other cases. We give precise characterizations of those pairs in terms of the
spectral properties of the matrices of the two quadratic forms.

The case that will be of most interest to us is the critical case. The Gaussian
elements of G(q, q!) are then all real, and parameterized by a Group of matrices
naturally associated to the quadratic forms. This leads to a natural conjecture on
the structure of the elements ofG(q, q!): are all o" them generated by the Gaussian
functions, using averages as above? This conjecture seems even more natural when
we have translated the problem on the level of entire functions, using the Bargmann
transform. Such a result is established when one of the forms is positive, this is actually
deduced from the one dimensional case of Hardy uncertainty principle. However when
the two forms have a signature, this is not so simple, and we will not be able to
conclude in general. The issue is that they may not be diagonalized in the same basis.
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10 INTRODUCTION

In extreme cases, not only they may not be diagonalized simultaneously, but the group
that parametrizes the Gaussian functions contains only one element. This is the case
for example whenq(x) = x2

1 $ x2
2 and q!(! ) = 2 ! 1! 2 on R2. Then the conjecture is

that any distribution f such that

f (x) exp(± " (x2
1 $ x2

2)) ' S!, !f (! ) exp(± 2"! 1! 2) ' S!

is a Hermite function f (x) = P(x) exp($ " |x|2). We could not conclude up to now.
If we take q(x, y) = 2 xy and q!(!, $ ) = 2 !$ on R2, the spaceG(q, q!) contains the

functions satisfying (0.2). The Gaussian functions in this case are

#t (x, y) = exp
$

$ "tx 2 $
"
t

y2%
.

We show that any element ofG(q, q!) can be built up using the #t . For the example
above we have

sgn(x) exp($ 2" |xy|) = x
" "

0
#t (x, y)

dt
(

"t
.

Now take the distribution f (x, y) = 1( x) ) &(y), where & is the Dirac mass. It is an
element of G(q, q!), since !f (!, $ ) = &(! )1($). It is actually the limiting case of #t as
t * 0. If F 2 is the Fourier transform with respect to the second variable, we have

F 2f (x, y) = 1 = exp( $ " (x2 + y2)) + " (x2 + y2)
" 1

0
exp($ "t (x2 + y2)) dt

hence we can expressf in terms of the #t :

f (x, y) = #1(x, y) + "x 2
" 1

0
#t (x, y)

&
"
t

dt $ ' 2
y

" 1

0
#t (x, y)

dt

4
(

"t
.

We prove more generally that any element ofG(q, q!) can be decomposed in the
following way:

(0.6) f (x, y) =
'

k

Pk (x, y, ' x , ' y )
"

#t (x, y) dµk (t),

where the sum is Þnite,Pk are polynomials in x, y and in the partial differential
operators ' x , ' y , and µk are Þnite measures on]0, & [. Since we take derivatives,
(0.6) is a distribution in general. However we show that it is regular away from the
coordinate axis. Indeed,f (x, y) deÞned by (0.6) is a real analytic function away from
the axis, and satisÞes an estimate of the form

|f (x, y)| % C! (1 + |x| + |y|)N exp($ 2" |xy|)

whenever |xy| > ( > 0, as well as its Fourier transform. As shown by the example
above, there are non zero solutions that vanish forxy += 0 . They are exactly linear
combinations of distributions of the form

&(k) (x) ) yl , or x k ) &( l ) (y).

Our main results come when considering the analogue of the quadratic forms2xy or
x2$ y2 in higher dimensions. The Lorentz form is deÞned byq(x, y) = x2

1+ á á á+ x2
d$ y2,

x ' Rd, y ' R. We are able to prove the same structure property as in (0.6) for the
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INTRODUCTION 11

elements ofG(q, q), except that the integrals are over the Lorentz group of matrices.
The solutions have the property that they are real analytic inside the Lorentz cone,
while they can be singular outside. We prove that no element ofG(q, q) is supported
in the set { q = 0 } , unlike in dimension 1. However we exhibit distributions that vanish
inside the cone, as well as their Fourier transforms, without vanishing completely. We
prove similar results when considering pairs(q, q!) whereq is the Lorentz form and q!

is any form of the type q!(!, $ ) = a1! 2
1 + á á á+ ad! 2

d + a$2, with ai , a += 0 .
We do realize that this volume asks more questions than it solves. We organize

it as follows. We begin with an history of uncertainty principles of Hardy type, and
their di"erent generalizations. We show how the use of the Bargmann transform sig-
niÞcantly simpliÞes their proofs and uniÞes the results. We mainly focus on results of
Hardy, Morgan, Beurling. In the second chapter we go further in details to get richer
results, including the aforementioned Hardy uncertainty principle in the sub-critical
case. We prove various uncertainty principles where any function or distribution satis-
fying the conditions is an average of Gaussian functions satisfying the same estimates.
In the next chapter we start the study of Hardy uncertainty principle when considering
non positive forms. This leads to a classiÞcation into critical, sub- and super-critical
pairs. The critical pairs will be studied in more details in the fourth chapter. We state
there the main conjectures on the structure of the spacesG(q, q!), and the equivalent
problems that arise on the level of entire functions. We then prove the main result
when we have a Lorentz quadratic form, and variants.
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CHAPTER 1

HARDYÕS UNCERTAINTY PRINCIPLE
AND ITS GENERALIZATIONS

1.1. HardyÕs uncertainty principle

Throughout this text we will use the following terminology.

Definition 1.1.1 . Ð Let A be a real symmetric matrix. It is positive if

,Ax, x - > 0

wheneverx += 0 . It is semi-positive if ,Ax, x - ! 0 for all x.

A symmetric matrix A is positive if and only if its eigenvalues are positive. It
is semi-positive if and only if its eigenvalues are non-negative. We denote byI the
identity matrix.

Definition 1.1.2 . Ð A Gaussian function is a function of the form

f (x) = exp( $ " ,Ax, x -),

where A is a positive symmetric matrix. The Fourier transform of f is det(A)# 1/ 2

exp($ "
(
A# 1x, x

)
). A Hermite function is a function of the form

f (x) = P(x) exp($ " ,Ax, x -),

where P is a polynomial. The Fourier transform of f has the form

Q(x) exp($ "
(
A# 1x, x

)
),

where Q is a polynomial of the same degree asP.

The standard Gaussian function is

#(x) = exp( $ " |x|2).

We have # = !#.

HardyÕs uncertainty principle is the following, see [14].

SOCIƒTƒ MATHƒMATIQUE DE FRANCE 2009



14 CHAPTER 1. HARDY’S UNCERTAINTY PRINCIPLE AND ITS GENERALIZATIONS

Theorem 1.1.3 . Ð Let A, B be two positive matrices, andN ' R. Let f ' L 2(Rd)
such that, for almost all x, ! ' Rd,

|f (x)| % C(1 + |x|)N exp($ " ,Ax, x -),(1.1)

| !f (! )| % C(1 + |! |)N exp($ " ,B!, ! -).(1.2)

If A $ B # 1 has a positive eigenvalue, thenf = 0 . If A = B # 1, then there exists a
polynomial P, of degree at mostN , such that

f (x) = P(x) exp($ " ,Ax, x -).

When f = 0 is the only possible conclusion, we will speak ofthe weak HardyÕs
uncertainty principle , and of strong HardyÕs uncertainty principlewhen A = B # 1 and
N ! 0.

Many generalizations of Theorem1.1.3 in di"erent directions have been given.
In [10], the following result is obtained:

Theorem 1.1.4 . Ð Let a, b > 0 with ab ! 1, and f ' S!(R). Let 1 % p, q % & .
Assume that

f (á) exp("a | á |2) ' L p(R), !f (á) exp("b| á |2) ' L q.

Then f = 0 unlessp = q = & and ab= 1 .

The condition is optimal since the Gaussian functionf (x) = exp( $ "ax 2) is a solu-
tion for ab= 1 and p = q = & . The corresponding statement forRd was Þrst obtained
in [7]. Functions satisfying close conditions are proved to be Hermite functions:

Theorem 1.1.5 . Ð Let N ' R and f ' L 2(Rd). Assume that

(1 + |x|)# N f (x) exp(" |x|2) ' L 1(Rd), (1 + |! |)# N !f (! ) exp(" |! |2) ' L 1(Rd).

Then f (x) = P(x) exp($ " |x|2), where P is a polynomial of degree less thanN $ d.

Theorem1.1.4is a consequence of Theorem1.1.5. We have stated Theorem1.1.5for
the standard Gaussian functionexp($ " |x|2). The general formulation, with matrices
A and B as in HardyÕs uncertainty principle, can be done in the same way (see
Theorem 1.3.5).

Morgan gave in [22] the following version of the uncertainty principle, where the
Gaussian functions have been replaced by a more general family.

Theorem 1.1.6 . Ð Let 1 < p < 2, q be the conjugate exponent, anda, b > 0. Let
f ' L 2(R) such that for almost all x, ! ' R,

|f (x)| % C exp($ 2"p # 1ap|x|p), | !f (! )| % C exp($ 2"q # 1bq|! |q).

If ab > | cos(p"
2 )|1/p , then f = 0 .
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This is an intermediate result between Paley-Wiener-SchwartzÕs Theorem, corre-
sponding to p = 1 , and HardyÕs uncertainty principle. Morgan gives a family of
solutions when ab = | cos(p"

2 )|1/p . The characterization of all possible solutions may
be di!cult, since he shows the following: given any N ' R and ab= | cos(p"

2 )|1/p , one
can Þnd a nonzerof ' L 2(R) and M ' R such that

|f (x)| % (1 + |x|)N exp($ 2"p # 1ap|x|p), | !f (! )| % (1 + |! |)M exp($ 2"q # 1bq|! |q)

Unlike Theorem 1.1.3, N may take negative values. Another version of Theorem1.1.6
has been given in [7]:

Theorem 1.1.7 . Ð Let 1 < p < 2, q be the conjugate exponent, anda, b > 0. Let
f ' L 2(R) such that

"

R
|f (x)| exp(2"p # 1ap|x|p) dx < & ,

"

R
| !f (! )| exp(2"q # 1bq|! |q) d! < & .

If ab > | cos(p"
2 )|1/p , then f = 0 .

The proofs of Theorems1.1.3, 1.1.4, 1.1.6 and 1.1.7 are very similar and rely on
Phragm•n-Lindelšf principle, which can be stated as follows.

Lemma 1.1.8 (Phragm•n-Lindelšf) . Ð Let ) ! 1. Let F be an analytic function of
order ) in a domain delimited by two lines forming an angle less than"# . Assume that
F is continuous on the closure of the domain, and has polynomial growth of orderN
on each line of the boundary. Then it has polynomial growth of orderN in the whole
domain.

See [14] for details. One can sketch the original proofs of HardyÕs and MorganÕs
uncertainty principles as follows: Þrst observe that the conditions given onf and !f
enable us to extend them to entire functions. Then one tries to apply Lemma1.1.8or
its numerous variants (see [18, 27]) to f . The proof of Theorem 1.1.5 is slightly dif-
ferent, since we apply Phragm•n-Lindelšf principle to an auxiliary function, obtained
by convolution of f with a Gaussian function.

In the next section we will introduce the Bargmann transform, a tool that will be
used throughout this paper. We will show that it can be used to unify these proofs
and give further generalizations of Theorems1.1.5 and 1.1.7.

1.2. The Bargmann transform

As mentioned before, the auxiliary function used in the proof of Theorem1.1.5 is
a convolution of f by a Gaussian function. This is almost the classical tool known as
the Bargmann transform of f . We still denote by # the standard Gaussian function
#(x) = exp( $ " |x|2).
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16 CHAPTER 1. HARDY’S UNCERTAINTY PRINCIPLE AND ITS GENERALIZATIONS

Definition 1.2.1 . Ð The Bargmann transform of a tempered distributionf ' S!(Rd)
is deÞned, forz ' Cd, by

(1.3) B(f )(z) = exp
$"

2
z2%

f % #(z).

Here, z2 = z2
1 + á á á+ z2

d.
We denote by , - the duality bracket between the Schwartz spaceS(Rd) and the

tempered distributions S!(Rd). Many properties of B are shown in [3, 4]. For example
it is injective. More generally we have the following Lemma, that will be useful later
on:

Lemma 1.2.2. Ð Let t > 0 and f ' S!(Rd). Assume that for all polynomial P we
have

(1.4)
(
f, P (á) exp($ t| á |2)

)
= 0 .

Then f = 0 .

Proof. Ð After a change of variables we may assume thatt = " . Relation (1.4) is
equivalent to B(f ) = 0 . Hencef % #= 0 , or !f# = 0 , and consequentlyf = 0 .

The Bargmann transform was initially used as an isomorphism fromS!(Rd) into
the Fock SpaceF , that is deÞned as follows.

Definition 1.2.3 . Ð The Fock spaceF is the space of entire functionsF on Cd,
such that there existsC and N > 0, such that for all z ' Cd,

(1.5) |F (z)| % C(1 + |z|)N exp
$"

2
|z|2

%
.

Definition 1.2.4 . Ð The spaceF 0 is the space of entire functionsF on Cd, such
that for all N > 0, there existsCN , such that for all z ' Cd,

(1.6) |F (z)| % CN (1 + |z|)# N exp
$"

2
|z|2

%
.

Consider the topology onF 0 given by the semi-norms

QN (F ) = sup
z

|F (z)|(1 + |z|)N exp
$

$
"
2

|z|2
%
.

Then the dual space ofF 0 can be identiÞed with F : any continuous linear form on
F 0 can be written as

F $*
"

Cd
F (z)G(z) exp($ " |z|2) dV(z),

for a uniquely determined G ' F . Here dV(z) is a renormalization of the Lebesgue
measure onCd. Recall that the topology of S(Rd) is deÞned by the semi-norms

(1.7) PN (* ) = sup
|# |$ N,x %Rd

(1 + |x|)N |' # * (x)|.

Proposition 1.2.5 . Ð The Bargmann transform is a homeomorphism from the space
S!(Rd) into F , and from S(Rd) into F 0.
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1.3. HARDY’S THEOREM ON S! 17

The inverse Bargmann transform is given by the following identity, which is the
fundamental isometry relation for the Bargmann transform:

Proposition 1.2.6 . Ð Let f ' S!(Rd), and * ' S(Rd). Then

(1.8)
(
f , *

)
=

"

Cd
B(f )(z) B(* )(z) exp($ " |z|2) dV(z).

Another useful property is the following analogue of ParsevalÕs Identity.

Proposition 1.2.7 . Ð Let f ' S!(Rd). For all z ' Cd, we have

(1.9) B(f )(z) = B( !f )( iz ).

1.3. HardyÕs Theorem on S!

1.3.1. Dimension one. Ð A simple computation shows that the Bargmann trans-
form maps the space of Hermite functions of the formP(x) exp($ "x 2) into the space
of polynomials. Thus Theorem 1.1.5 amounts to showing that the Bargmann trans-
form of such a function is a polynomial. We can prove a more general version of
Theorem 1.1.5:

Theorem 1.3.1 . Ð Let f ' S!(R). Then

(1.10) f (á) exp(" (á)2) ' S!(R), !f (á) exp(" (á)2) ' S!(R)

if and only if there exists a polynomial P such that for all x ' R, f (x) =
P(x) exp($ "x 2).

Proof of Theorem 1.3.1. Ð Let F be the Bargmann transform of f . Sincef (á) exp(" | á
|2) ' S!(Rd), there exists N such that for all * ' S(R),

*
*( f exp(" (á)2), * (á)

) *
* % CPN (* ).

If we write F (z) as the action of the distribution f (á) exp(" (á)2) on the test function

* z (x) = exp
$

$ 2"x 2 + 2 "xz $
"
2

z2%
,

we obtain

|F (z)| % CPN (* z )

% C sup
x %Rd

(1 + |x| + |z|)2N exp
$

$ 2" |x|2 + 2 " |x|| Re(z)| $
"
2

Re(z2)
%
.

% C sup
r> 0

(1 + r + |z|)2N exp
$

$ 2" (r $ Re(z)/ 2)2 +
"
2

| Im(z)|2
%
,

and thus

(1.11) |F (z)| % C(1 + |z|)2N exp
$"

2
| Im(z)|2

%
.
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18 CHAPTER 1. HARDY’S UNCERTAINTY PRINCIPLE AND ITS GENERALIZATIONS

If we use now the hypothesis on!f and Formula (1.9), we obtain

(1.12) |F (z)| % C(1 + |z|)2M exp
$"

2
| Re(z)|2

%

for some positive integerM . We conclude that F is a polynomial using the following
lemma and LiouvilleÕs Theorem.

Lemma 1.3.2. Ð Let F be a continuous function on! = { z; Re(z) ! 0, Im(z) ! 0} ,
holomorphic in the interior. Assume that there existC, N > 0 such that for all z ' ! ,

|F (z)| % C(1 + |z|)N exp
$
| Im(z)|2

%
.

Assume moreover that|F (ix )| % C(1 + |x|)N for x ! 0. Then

|F (z)| % C(1 + |z|)N

for all z ' ! .

Proof. Ð Consider, for ( > 0, the function F! (z) = exp
$

i
2 (z 2

%
F (z). By assumption,

it has a polynomial growth of order N on iR+ and on the half-line { (x, y) ' R2
+ ; x =

( # 1y} , with constants independent of ( . Lemma 1.1.8 implies that this estimate is
true between the lines, and thus|F (z)| % C(1 + |z|)N in ! .

Theorem 1.3.1corresponds to the critical case of Theorem1.1.3. The super critical
case is a corollary:

Theorem 1.3.3 . Ð Let f ' S!(R). Let a, b ' R. Let G(a, b) be the space of tempered
distributions f such that

(1.13) f (á) exp("a (á)2) ' S!(R), !f (á) exp("b(á)2) ' S!(R).

If ab > 1 then G(a, b) = { 0} . If ab= 1 then any element ofG(a, b) can be written as
P(x) exp($ "ax 2) for some polynomialP.

1.3.2. Higher dimensions. Ð We will now give a distributional version of The-
orem 1.1.3 in any dimension. For that purpose we need the following result which
proves that a too fast Gaussian decay on one direction ofRd is impossible, except for
the zero distribution.

Theorem 1.3.4 . Ð Let a > 1 and f ' S!(Rd). Assume that

(1.14) f (x) exp("x 2
1) ' S!(Rd), !f (! ) exp(a"! 2

1) ' S!(Rd).

Then f = 0 .

Proof. Ð Let + ' S(Rd# 1). Consider the distribution T$ ' S!(R) deÞned by

,T$ , * - = , f, * ) +-,

where (* ) +)(x) = * (x1)+(x2, . . . , xd). Then (1.14) implies that T$ (á) exp(" | á |2) '
S!(R) and +T$ (á) exp(a" | á |2) ' S!(R). Theorem 1.3.3 implies that T$ = 0 . This is true
for all + ' S(Rd# 1), and we conclude thatf = 0 .
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Theorem 1.3.5 . Ð Let A, B be two symmetric matrices, withA positive and B in-
vertible. Let f ' S!(Rd) such that

(1.15) f (á) exp(" ,Aá, á-) ' S!(Rd), !f (á) exp(± " ,B á, á-) ' S!(Rd).

If AB has an eigenvalue, such that |, | > 1, then f = 0 . If all its eigenvalues are1
or $ 1, then

f (x) = P(x) exp($ " ,Ax, x -),

where P is a polynomial.

Here I is the identity matrix.

Proof. Ð Note that AB is conjugated to the symmetric matrix A1/ 2BA 1/ 2, and hence
it is diagonalizable. Let Q ' On (R) such that t QA1/ 2BA 1/ 2Q is diagonal, with diag-
onal coe!cients b1, . . . , bn . Put P = A# 1/ 2Q, and g(x) = f (Px).

We are lead to characterizeg such that

(1.16) g(á) exp(" | á |2) ' S!(Rd), !g(! ) exp(± " (b1! 2
1 + á+ bd! 2

d)) ' S!(Rd),

where bi ' R \ { 0} are the eigenvalues ofAB .
Assume that maxi |bi | > 1. Suppose for simplicity that |b1| > 1. Let + be a Þxed

and compactly supported function on Rd# 1. Let T$ be the element ofS!(R) deÞned
by

,T$ , * - =
,

g, * ) !+
-

.

Its Fourier transform is deÞned by
,

+T$ , *
-

= , !g, * ) +-.

We Þrst use the fact that g(x) exp("x 2
1) ' S!(Rd), and we obtain

(1.17) T$ (á) exp(" | á |2) ' S!(R).

Next we use the inequality |b1! 2
1 + á+ bd! 2

d | ! | b1|! 2
1 $ |

.
i> 1 bi ! 2

i |, and the fact that
+ is compactly supported. We obtain

(1.18) +T$ (á) exp(" |b1|! 2
1 ) ' S!(R).

Since |b1| > 1, Theorem 1.3.4 implies that T$ = 0 . Since+ is arbitrary, we conclude
that g = 0 .

Assume now that |bi | = 1 for all i . Equations (1.17), (1.18), and Theorem 1.3.1
imply that

T$ (x1) = P$ (x1) exp($ "x 2
1),

where P is a polynomial. The degree ofP depends only on the orders ofg and !g, not
on the choice of+. Hence one can write

g(x) =
N'

k=0

xk
1 exp($ "x 2

1) ) gk (x2, . . . , xd),
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20 CHAPTER 1. HARDY’S UNCERTAINTY PRINCIPLE AND ITS GENERALIZATIONS

where the gk are tempered distributions, and N depends only on the orders ofg and
!g. Now (1.16) implies that for all k,

f k (x2, . . . , xd) exp(" (x2
2 + á á á+ x2

d)) ' S!(Rd# 1),

!f k (! 2, . . . , ! d) exp(± " (b2! 2
2 + á á á+ bd! 2

d)) ' S!(Rd# 1).

The result follows by induction.

Remark 1.3.6 . Ð Theorems 1.1.3, 1.1.4 and 1.1.5 are direct corollaries of Theo-
rem 1.3.5. Our proof simpliÞes all their classical proofs.

1.4. MorganÕs uncertainty principle on S!(R)

In order to sate MorganÕs Theorem in the distribution setting, we need cuto"
functions. Throughout this paper, the letter - will denote a smooth function on R,
vanishing in a neighborhood of the origin, and equal to1 outside a compact set.
Similarly, the letter - + will denote a a smooth function equal to1 in a neighborhood
of + & , and vanishing on ]$& , 1].

Theorem 1.4.1 . Ð Let 1 < p < 2, q be the conjugate exponent, anda, b > 0. Let
f ' S!(R). Assume that

(1.19) f (á)- (á) exp(2"p # 1ap| á |p) ' S!(R), !f (á)- (á) exp(2"q # 1bq| á |q) ' S!(R),

and that ab > | cos(p"
2 )|1/p . Then f = 0 .

Note that condition ( 1.19) is independent of the particular choice of- . We have
to formulate the hypotheses in this way, since the functions| á |p and | á |q are not
smooth on R. Recall that the constant | cos(p"

2 )|1/p is optimal as shown by MorganÕs
examples in [22].

Proof of Theorem 1.4.1. Ð We consider the function F (z) = f % #(z) rather than the
Bargmann transform itself. We have, by Proposition 1.2.7,

F (z) =
,

!f , + z

-
,

with +z(! ) = exp( $ "! 2 + 2 i"!z ). We argue then as in the proof of Theorem1.3.1,
and estimate the semi-norms of the test functions involved.

Take the cut-o" function - such that - (r ) = 1 for |r | > 2, and - (r ) = 0 for |r | < 1.
First use the fact that !f ' S!(R), so that there exists n, such that

*
*
*
,

!f , (1 $ - )+z

- *
*
* % CPn ((1 $ - )+z)

% C sup
0<r< 2

(1 + r + |z|)2n exp($ "r 2 + 2 "r | Im(z)|).
(1.20)

MƒMOIRES DE LA SMF 119



1.4. MORGAN’S UNCERTAINTY PRINCIPLE ON S! (R) 21

Now we use the fact that !f (á)- (á) exp(2"q # 1bq| á |q) ' S!(R). One can thus Þnd some
m > 0, such that

*
*
*
,

!f , -+ z

- *
*
* % CPm

$
-+ z exp($ 2"q # 1bq| á |q)

%

% C sup
r> 1

(1 + r + |z|)2m exp($ "r 2 + 2 "r | Im(z)| $ 2"q # 1bqr q).
(1.21)

Combining (1.20) and (1.21), we Þnally Þnd that there exist C, N > 0 such that

|F (z)| % C sup
r> 0

(1 + r + |z|)N exp($ "r 2 + 2 "r | Im(z)| $ 2"q # 1bqr q).

Then we use the identity r | Im(z)| % p# 1b# p| Im(z)|p + q# 1bqr q, and obtain

(1.22) |F (z)| % C(1 + |z|)N exp(2"p # 1b# p| Im(z)|p).

We will show that for ( small enough, and! ' R,

(1.23) |F (! )| % C(( ) exp($ 2"p # 1(a $ ( )p|! |p).

We will choose ( so that (a $ ( )b > | cos(p"
2 )|1/p . Then, by a standard argument

already used in [7, 22, 23], it will follow from ( 1.22) and (1.23) that F = 0 .

So we now prove Inequality (1.23). We argue as in the proof of Inequality 1.22.
Writing F (! ) as the action of f on the test function x * #(x $ ! ), we can prove as
well that

|F (! )| % C sup
r> 0

(1 + r + |! |)N exp($ " (r $ | ! |)2 $ 2"p # 1apr p).

In order to estimate the right hand side, we use the following identity: whenever
0 < s < t and $ > 0, there exists a constantC(a, $) depending only ona and $, such
that

2p# 1ap(tp $ sp) % C(a, $) + ( t $ s)2 + $sp.

Indeed, the left hand side is bounded by2ap(t $ s)tp# 1 % (t $ s)2 + a2pt2p# 2, which
allows to conclude fors > t/ 2 (remember that p < 2); otherwise, we write 2p# 1aptp %
C(a) + 1

4 t2 % C(a) + ( t $ s)2.

Hence, forr % |! |,

(1 + r + |! |)N exp($ " (r $ | ! |)2 $ 2"p # 1apr p)

% C(a, ( )(1 + |! |)N exp($ 2"p # 1(a $ ( )p|! |p).

For r ! | ! |, we write

(1 + r + |! |)N exp($ " (r $ | ! |)2 $ 2"p # 1apr p)

% (1 + r + |! |)N exp($ " (r $ | ! |)2) exp($ 2"p # 1ap|! |p)

% C(1 + |! |)N exp($ 2"p # 1ap|! |p),

and (1.23) follows. This proves that F = 0 , and hencef = 0 .
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1.5. BeurlingÕs uncertainty principle

A particularly elegant generalization of Theorem 1.1.3has been given by Beurling.
The proof was Þrst forgotten, and then Hšrmander published one in [13]. The original
statement is the following:

Theorem 1.5.1 . Ð Let f ' L 2(R). Then

(1.24)
""

R2
|f (x) !f (y)| exp(2" |xy|) dxy < &

if and only if f = 0 .

This implies HardyÕs uncertainty principle (onR, when A = B # 1 and N < $ 1).
in [7], we obtained a complete analogue of BeurlingÕs Theorem, with a characterization
of Hermite functions, in any dimension. We found then a bilinear version of this result
in [11], which can be stated as follows.

Theorem 1.5.2 . Ð Let f, g ' L 2(Rd), and N ' R. Assume that

(1.25)
""

R2d

|f (x)!g(y)| + | !f (y)||g(x)|
(1 + |x| + |y|)N exp(2" |, x, y-|) dxy < & .

Then either f = 0 , or g = 0 , or f and g are Hermite functions,

f (x) = P(x) exp($ " ,Ax, x -), g(x) = Q(x) exp($ " ,Ax, x -),

where A is a positive matrix and P, Q are polynomials such thatdeg(P) + deg(Q) <
N $ d.

Here we encountered a di!culty: the quadratic form in the exponential is not
positive or negative deÞnite. Hencef and !f are not automatically entire functions,
so we cannot apply a Phragm•n-Lindelšf principle to f or !f . Let us remark that in
dimension1, Hšrmander could do it in [13], using a speciÞcity of Formula (1.24), and
a tedious version of Phragm•n-Lindelšf principle.

We could overcome this di!culty in [ 7] by considering a convolution of f with a
Gaussian function, instead off itself. This is a natural choice since this new function
has still to be a Hermite function. We showed that it also satisÞes (1.25). It seems
that this is the Þrst use of the Bargmann transform in uncertainty principles.

Here we will show that the Bargmann transform can be used to get a generalization
of Theorem1.5.2to the setting of distributions. The conditions are given on the tensor
products f ) !g and g ) !f :

Theorem 1.5.3 . Ð Let f, g ' S!(Rd). Assume that

(1.26) f ) !gexp(± 2" ,x, y-) ' S!(R2d), !f ) gexp(± 2" ,x, y-) ' S!(R2d).

Then either f = 0 , g = 0 , or there exists an orthogonal decomposition ofRd, that is
Rd = E ! . E !! , such that the distributions f and g may be written as

(1.27) f (x) = P(x!, ' x !! ) exp($ " ,Ax !, x!-), g(x) = Q(x!, ' x !! ) exp($ " ,Ax !, x!-),
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whereA is a real semi-positive symmetric matrix andP and Q are polynomials. Here
x! and x!! are the orthogonal projections ofx on E ! and E !! .

Proof. Ð Let us emphasize that now, in a distribution context, degenerate matrices
A are allowed, as well as derivatives of Dirac masses. We may assume thatf += 0
and g += 0 . Denote by F and G the Bargmann transforms of f and g. We can write
F (z1)G($ iz2) as

(1.28) exp(
"
2

(z2
1 + z2

2))
(
f (x) ) !g(y), exp($ " (x $ z1)2 $ " (y $ z2))

)
.

We will show as in [7, 11] that F (z)G($ iz ) is a polynomial. We use the same trick as in
the proofs of Theorems1.3.1and 1.4.1, writing ( 1.28) as the action of the distribution
f (x) ) !g(y) exp(2" |, x, y-|) against some test function. One actually distinguishes the
cases|, x, y-| % 1 and |, x, y-| ! 1 to avoid di"erentiability issues. Let z1, z2 ' C. We
Þnd

|F (z1)G($ iz2)| % C sup
x,y %Rd

(1 + |x| + |y| + |z1| + |z2|)N

" exp($ " (|x|2 + |y|2 + 2 |, x, y-|))

" exp
$
2" ,x, Re(z1)- + 2 " ,y, Re(z2)- $

"
2

Re(z2
1 + z2

2)
%
.

Put R2 = |x|2 + |y|2 + 2 |, x, y-| = max( |x + y|2, |x $ y|2). Then

|F (z1)G($ iz2)| % C sup
R> 0

(1 + R + |z1| + |z2|)N exp($ "R 2)

" exp
$
"R (| Re(z1 + z2)| + | Re(z1 $ z2)|) $

"
2

Re(z2
1 + z2

2)
%

% C(1 + |z1| + |z2|)N

" exp
$"

2
| Re(z1 $ z2)|| Re(z1 + z2)| +

"
2

| Im(z1, z2)|2
%
.

(1.29)

Using the hypothesis on !f ) g, we can prove as well that

|F (z1)G($ iz2)| % C(1 + |z1| + |z2|)N

" exp
$"

2
| Im(z1 + z2)|| Im(z1 $ z2)| +

"
2

| Re(z1, z2)|2
%
.

(1.30)

Next, apply Lemma 1.3.2 to the function F (z)G($ iz ). We have

|F (z)G($ iz )| % C(1 + |z|)N exp(" min( | Re(z)|2, | Im(z)|2)) ,

and henceF (z)G($ iz ) is a polynomial in z.

We conclude as is [7, 11], using a standard argument for entire functions of order
2, that F and G have the form

(1.31) F (z) = P(z) exp(
"
2

,Bz, z-), G(z) = Q(z) exp(
"
2

,Bz, z-),

where B is a symmetric complex matrix, and P, Q are polynomials.
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It follows from homogeneity and (1.29) that for all z, . ' Cd,

| Re ,Bz, . -| % | Re(z)|| Re(. )| +
1
2

(| Im(z)|2 + | Im(. )|2).

Taking z real and . imaginary yields Im(B ) = 0 . While if we take both real, we get
that I $ B I + B are semi-positive. Put E !! = Ker(I + B ) , E ! = E !! & , and let B !!

be the restriction of B to E !! . The inverse Bargmann transform gives (1.27), with
A = ( I + B !! )# 1(I $ B !! ).

As a corollary, one can give a more precise result than Theorem1.3.1, in view of
the degrees of the polynomials involved.

Theorem 1.5.4 . Ð Let f, g ' S!(Rd), and N > 0. Assume that

f ) !gexp(± 2" ,x, y-) ' S!(R2d)

and

(1 + |x| + |y|)# N |g(x) !f (y)| exp(2" |, x, y-|) ' L 1(R2d).

Then either f = 0 , g = 0 , or f and g can be written as

f (x) = P(x) exp($ " ,Ax, x -), g(x) = Q(x) exp($ " ,Ax, x -),

where A is a real positive symmetric matrix, and P and Q are polynomials such that
deg(P) + deg(Q) < N $ d. In particular f = 0 or g = 0 as soon asN % d.

The di"erence with Theorem 1.5.2 is that only one condition of integrability is
su!cient to characterize Hermite functions.

1.6. One-directional conditions

In this section we discuss other versions of Theorems1.3.1, 1.4.1 and 1.5.3. Either
the proofs can be done as in the previous section, or they are just corollaries of those
theorems.

We can state one-directional versions of HardyÕs uncertainty principle.

Theorem 1.6.1 . Ð Let f ' S!(Rd). Assume that

f (x) exp("x 2
1) ' S!(Rd) and !f (! ) exp("! 2

1) ' S!(Rd).

Then there exists an integerN ! 0 and distributions f k ' S!(Rd# 1) such that f may
be written as

f (x) =
N'

k=0

xk
1 exp($ "x 2

1) ) f k (x2, . . . , xd).
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Proof. Ð We proceed as in the proof of Theorem1.3.4. Let + ' S!(Rd# 1) and deÞne
the distribution T$ on S(R) by

,T$ , * - = , f, * ) +-.

We have T$ (á) exp(" | á |2) ' S!(R) and +T$ (á) exp(" | á |2) ' S!(R). It follows from
Theorem 1.3.1 that T$ is a Hermite function. Since the order ofT$ depends only on
the order of f , this polynomial has a degreeN independent of+. Hence we can write

T(x) =
N'

k=0

xk exp($ " |x|2)ak (+).

We immediately see that the ak are tempered distributions of Rd# 1, and the result
follows.

In particular we have the following.

Corollary 1.6.2 . Ð Let f ' S!(Rd). Assume that

f (x) exp("x 2
i ) ' S!(Rd), !f (! ) exp("! 2

i ) ' S!(Rd),

for all i = 1 , . . . , d. Then f (x) = P(x) exp($ " |x|2) for some polynomialP.

We obtain an analogue for MorganÕs Theorem:

Theorem 1.6.3 . Ð Let 1 < p < 2 and q be the conjugate exponent. Leta, b > 0.
Assume that

f (x)- (x1) exp(2"p # 1ap|x1|p) ' S!(Rd). !f (! )- (! 1) exp(2"q # 1bq|! 1|q) ' S!(Rd).

If ab > | cos(p"
2 )|1/p , then f = 0 .

Remark 1.6.4 . Ð The conclusions of Theorems1.6.1 and 1.6.3 are false if the con-
ditions given do not hold on the same coordinate for the function and the Fourier
transform. A counter-example is given the function +(x1) !+(x2) on R2, where + is
compactly supported.

Nazarov gave in [23] an interesting analogue of Theorem1.1.6, which can be called
a one-sided uncertainty principle. It only asks for MorganÕs conditions on one half-
line. We can generalize this to the setting of tempered distributions. Recall that- +

is a smooth function vanishing on]$& , 1] and equal to 1 on a neighborhood of+ & .

Theorem 1.6.5 . Ð Let 1 < p < 2 and q be the conjugate exponent. Leta, b > 0 and
f ' S!(Rd). Assume that

f (x) exp(2"p # 1ap|x1|p)- + (x1) ' S!(Rd),

!f (! ) exp(2"q # 1bq|x1|q)- + (! 1) ' S!(Rd).
(1.32)

If ab > sin( "
p ), then f = 0 .
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Proof. Ð We can assume thatd = 1 . We consider the entire functionF (z) = f % #(z).

We have, by Proposition 1.2.7, F (z) =
,

!f , * z

-
, with * z (! ) = exp( $ "! 2 + 2 i"!z ).

Write
F (z) =

,
!f , (1 $ - + )* z

-
+

,
!f , - + * z

-
.

We will show that for Im(z) < 0,

(1.33) |F (z)| % C(1 + |z|)N exp(2"p # 1b# p| Im(z)|p).

Indeed, sincef ' S!(R), we can ÞndM such that
*
*
*
,

!f , *
- *

*
* % CPM (* ) for all Schwartz

function * . Hence
*
*
*
,

!f , (1 $ - + )* z

- *
*
* % CPM ((1 $ - )* z )

% C sup
r $ 2

(1 + |r | + |z|)2M exp($ "r 2 $ 2"r Im(z))

% C(1 + |z|)2M exp(4" | Im(z)|).

This is smaller than (1.33) since p > 1. As in the proof of Theorem 1.4.1, we have as
well *

*
*
,

!f , - + * z

- *
*
* % C(1 + |z|)N exp(2"p # 1b# p| Im(z)|p).

We show now that for ! > 0,

(1.34) |F (! )| % C(( ) exp($ 2"p # 1(a $ ( )p|! |p),

for arbitrary small ( . Let #%(x) = exp( $ " (x $ ! )2). In the same way, one can prove
that

|, f, (1 $ - + )#%-| % C(1 + |! |)M exp($ " (|! | $ 2)2),

which is smaller than (1.34), sincep < 2. The estimate on, f, -# %- is done in the same
way as in the proof of Theorem1.4.1.

Finally, we use Phragm•n-Lindelšf principle to show that the estimates (1.33) and
(1.34) imply that f = 0 , as long as we choose( so that (a $ ( )b > sin( "

p ). Details
on this last point may be found in [23], but let us repeat brießy the argument.
Choose( > 0 and A > 0 such that (a $ ( )b > A > sin("/p ). Consider the function
G(z) = F (z1/p ) exp(2"p # 1b# pApz). It is analytic for Im(z) < 0 and continuous to the
boundary. Moreover, (1.33) and (1.34) imply that G(Rei& ) is exponentially decreasing
for / = 0 and / = $ " + $, with $ > 0 small enough. By Lemma1.1.8, G is in particular
bounded for Im(z) % 0. But the exponential decay on the boundary implies that

"

R

log |G(x)|
1 + x2 dx = $& .

Hence JensenÕs condition is not satisÞed, unlessG = 0 (see [8, 18]).

Unlike the case of MorganÕs Theorem, we do not know examples of solutions for
ab= sin( "/p ). Nazarov gives in [23] an entire function f on C, for which there exist
constants &, ) > 0, such that

|f (z)| % exp(2"p # 1| Im(z)|p + o(| Im(z)|p))
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for all z ' C (not only Im(z) < 0), |f (x)| % exp($ 2"p # 1 sin("/p )p|x|p + o(|x|p)) for
x ! 0, and f (x + iy ) = O(exp($ &|x|p)) for |x| ! ) |y|. The following lemma, which
links the growth of f on the imaginary axis with decay of the Fourier transform,
proves that this example gives a solution for anyab < sin("/p ).

Lemma 1.6.6. Ð Let f be an entire function on C such that, for all z ' C,

(1.35) |f (z)| % exp(2"p # 1| Im(z)|p + o(| Im(z)|p))

Assume that there exist&, ) > 0 such that f (x + iy ) = O(exp($ &|x|p)) for |x| ! ) |y|.
Then

| !f (! )| % exp($ 2"q # 1|! |q + o(|! |q))

as ! * ±& , where p# 1 + q# 1 = 1 .

Proof. Ð We Þrst show that for any y ' R, R > 0 and n ' N,

(1.36) | !f (! )| %
n!

(2" |! |)n R# n exp
$
2"p # 1Rp + o(Rp)

%
.

Indeed, by Cauchy formula,

|f (n ) (x)| % n! R# n sup
|z# x |= R

|f (z)|.

When |x| > (1 + ) )R, we use the exponential decay off to Þnd C, &! > 0 such that

|f (n ) (x)| % Cn! R# n exp($ &!|x|p).

For |x| % (1 + ) )R we use (1.35) and Þnd

|f (n ) (x)| % n! R# n exp(2"p # 1Rp + o(Rp)) .

Both inequalities yield
"

R
|f (n ) (x)| dx % n! R# n exp(2"p # 1Rp + o(Rp)) ,

which also gives (1.36). Now we just have to minimize (1.36) with respect to R and n.

This is done taking Rp =
n
2"

and n of the order 2" |! |q, where q is the conjugate

exponent of p. This gives the required decay for !f .

We show now that we have analogues of Theorem1.6.5 for HardyÕs uncertainty
principle. This corresponds to Theorem1.6.5 for p = 2 .

Theorem 1.6.7 . Ð Let f ' S!(Rd) and a, b > 0 such that ab > 1. Assume that

(1.37) f (x)- + (x1) exp("a |x1|2) ' S!(Rd), !f (! 1)- + (! 1) exp("b|! 1|2) ' S!(Rd).

Then f = 0 .
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Proof. Ð We may assume that a = b > 1, and d = 1 . Let F be the Bargmann
transform of f . We proceed as in the proof of Theorem1.6.5. The hypothesis on !f
implies that

(1.38) |F (z)| % C(1 + |z|)N exp
$" (1 $ a)

2(1 + a)
| Im(z)|2 +

"
2

| Re(z)|2
%

for Im(z) < 0, while the hypothesis onf implies that

(1.39) |F (! )| % C exp
$" (1 $ a)

2(1 + a)
! 2%

for ! > 0. Since a > 1, we have |F (z)| % C exp($ &|z|2) for z ' R+ or z ' iR# ,
for some & > 0. The function H (z) = F (

(
z) is analytic on the lower half-plane,

continuous on the boundary, and satisÞes
"

R

log |H (x)|dx
1 + x2 = $& .

We conclude as before thatf = 0 .

The condition ab > 1 is sharp since the standard Gaussian function satisÞes these
conditions for ab= 1 . However the same is valid for

(1.40) f #,' (x) = exp( $ " (x + ) )2 $ 2i"0x ),

where ), 0 are non-negative parameters. Its Fourier transform is given by

/f #,' (! ) = exp( $ " (! + 0)2 + 2 i") (! + 0)) .

Hence we see thatf #,' (x) exp("x 2) and /f #,' (! ) exp("! 2) are bounded forx > 0 and
! > 0.

We can give a precise result in the critical case, when the condition on the Fourier
space is two-sided, and when it is one-sided onf .

Theorem 1.6.8 . Ð Let f ' S!(R). Assume that

(1.41) f (á)- + (á) exp(" | á |2) ' S!(R), !f (á) exp(" | á |2) ' S!(R).

Then there exists a tempered distributionµ with support in ]$& , 0], such that f = µ%#.
Conversely, every such function satisÞes(1.41).

Proof. Ð DeÞneµ by !µ = !f (á) exp(" | á |2). By assumption, µ ' S!(R), and f = µ % #.
We have to show that µ is supported by the negative axis. The distribution f , which
is a function, extends to an entire function of order2, since µ % #does. However we
will not be able to exploit the condition given on f directly . Consider instead F , the
Bargmann transform of f . We have F (z) = exp

$
"
2 z2

%
µ % # % #(z), hence

F (z) = ,µ, * z -,

where * z (t) = 1 /
(

2 exp
$

$ "
2 t2 + "tz

%
. The function F is the Laplace transform of

the distribution 1 = 1 /
(

2µ(á) exp
$

$ "
2 | á |2

%
.
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As in the proof of Theorem 1.6.7, we have the estimate

|F (z)| % C(1 + |z|)N exp
$"

2
| Im z|2

%

for Re z > 0. The assumption on !f implies that

|F (z)| % C(1 + |z|)N exp
$"

2
| Re(z)|2

%

for all z ' C. Now we use Lemma1.3.2 to Þnd that

|F (z)| % C(1 + |z|)N

for Re(z) > 0. Classical results on the Laplace transform (see [15], p 191) imply then
that 1 is supported in the negative axis. This proves thatµ is supported by ]$& , 0].

Remark 1.6.9 . Ð All functions of the form f = # % µare entire functions of order2
on C, and if µ is supported in ]$& , 0], we have

|f (x)| % C(1 + x)N exp($ "x 2)

when x ! 0, and
|f (x)| % C(1 + |x|)N

when x % 0. So the conditions on f can be restated as in HardyÕs Theorem as a
polynomial growth property. But we can not do the same on the Fourier transform
side, since!µ may not be a function (take for example the function µ equal to 1 on R#

and 0 on R+ ). If we take µ ' L 1 supported in ]$& , $ 1], we have non zerof ' S!(R)
such that

!f (á) exp(" | á |2) ' L " (R), f (á) exp(" | á |2) ' L p(0, & ),

for any value of p ' [1, & ]. Compare this to Theorem 1.1.4.

We end with remarks on distributions satisfying

(1.42) f (x)- + (á) exp(" | á |2) ' S!(R), !f (á)- + (á) exp(" | á |2) ' S!(R).

All linear combinations of the form

(1.43) f µ (x) =
"

f #,' (x)µ(), 0 ) d) d0

satisfy(1.42), as long asµ is, for example, a compactly supported distribution, with
support inside the set " = { ) ! 0, 0 ! 0} .

We will use a very interesting property of the Bargmann transform, which can be
called a one-sided estimate for the Bargmann transform. Letf be a general distri-
bution, and assume that its Bargmann transform is well deÞned. This is the case for
example whenf (á) exp($ "&| á |2) ' S!(Rd), for some 0 % & < 1. Proposition 1.2.5
states that f is tempered if and only if there exist C, N > 0 such that for all z ' Cd,

| B(f )(z)| % C(1 + |z|)N exp
$"

2
|z|2

%
.

We will show that the Bargmann transform characterizes the distributions f whose
restriction to a half-line is tempered.
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Lemma 1.6.10 (One-sided estimates for the Bargmann transform). Ð Let f ' D !(R)
be a distribution. Assume that f (á) exp

$
$ "

2 | á |2
%

' S!(R), so that the Bargmann
transform of f is well deÞned. Thenf- + (á) is a tempered distribution if and only if

| B(f )(z)| % C(1 + |z|)N exp
$"

2
|z|2

%
,

whenever Re(z) ! 0.

Proof. Ð The necessity of the condition is immediate, using semi-norms like previously.
We want to show that the relation

(1.44)
(
f , *

)
= C0

"

Cd
B(f )(z) B(* )(z) exp($ " |z|2) dV(z)

is true whenever* is a smooth function compactly supported in an interval [a, b], with
a > 0. Note that this is true for any tempered distribution and any Schwartz function
* , by Proposition 1.2.6.

Let G be the function deÞned by

G(&) =
C0

1 + &

"

C
B(f ( )(z) B(* ( )(z) exp($ " |z|2) dV(z),

where f ( (x) = f (x
(

1 + &) exp($ "&x2) and * ( (x) = * (x
(

1 + &) exp(+ "&x2). By as-
sumption, for &! 1, f ( ' S!(R), hence

G(&) =

(
f ( , * (

)

1 + &
=

(
f , *

)

(1 + &)3/ 2
.

We will show that G is real-analytic on ]0, 2], continuous at 0, and (1.44) will follow.
Consider the function

G(&, z) =
" b

a
* (x) exp

$
$ "

1 $ &
1 + &

x2 + 2 "x
z

(
1 + &

$
"
2

z2%
dx.

For &! 1, we have, after a change of variable,

(1.45) G(&) =
"

C
B(f )

0 z
(

1 + &

1
exp

$
$

"&
2(1 + &)

z2
%
G(&, z) exp($ " |z|2) dV(z).

We Þrst show that this is a well deÞned expression when0 % &% 2. When Re(z) ! 0,
we have by assumption

*
*
*
*B(f )

0 z
(

1 + &

1
exp

$
$

"&
2(1 + &)

z2%
*
*
*
*

% C(1 + |z|)N exp
$" (1 $ &)

2(1 + &)
| Re(z)|2 +

"
2

| Im(z)|2
%
.

(1.46)

Using integrations by parts, and the fact that * is compactly supported, for any M ,
there exists a constantCM such that for all z,

(1.47) |G(&, z)| % CM (1 + |z|)# M exp
0 2"b| Re(z)|

(
1 + &

$
"
2

| Re(z)|2 +
"
2

| Im(z)|2
1

.
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Combining this with ( 1.46), we get
*
*
*
*B(f )

0 z
(

1 + &

1
exp

$
$

"&
2(1 + &)

z2%
*
*
*
*exp($ " |z|2)|G(&, z)|

% C(1 + |z|)N # M exp
$

$
" (1 + 2&)
(1 + &)

| Re(z)|2 + 2 "b| Re(z)|
%

% C(1 + |z|)N # M .

Here C depends onb. Hence, choosingM big enough, we see that (1.45) is an abso-
lutely convergent integral for Re(z) ! 0, and deÞnes a real-analytic and continuous
function for 0 % &% 2.

We now use the hypothesisf exp($ "/ 2| á |2) ' S!. We write the expression
B(f )( z'

1+ (
) exp($ "(

2(1+ ( ) z2) as
(
f exp

$
$ "/ 2| á |2

%
, +(á, z)

)
, where

+(x, z) = exp
$

$ "/ 2x2 + 2 "x
z

(
1 + &

$
"
2

z2%
.

We Þnd the estimate
*
*
*B(f )

0 z
(

1 + &

1
exp

$
$

"&
2(1 + &)

z2%*
*
*

% C(1 + |z|)N !
exp

$" (3 $ &)
2(1 + &)

| Re(z)|2 +
"
2

| Im(z)|2
%
,

(1.48)

that we will use for Re(z) % 0. For G(&, z), we use the fact that whena % x % b and
Re(z) % 0, we havex Re(z) % 0. We obtain, for every M > 0, a constant CM such
that for all z with Re(z) % 0,

(1.49) |G(&, z)| % CM (1 + |z|)# M exp
$

$
"
2

| Re(z)|2 +
"
2

| Im(z)|2).

If we combine this with (1.48), we get
*
*
*
*B(f )

0 z
(

1 + &

1
exp

$
$

"&
2(1 + &)

z2%
*
*
*
*exp($ " |z|2)|G(&, z)|

% C(1 + |z|)N ! # M exp
$

$
2"&

(1 + &)
| Re(z)|2

%
.

% C(1 + |z|)N ! # M .

We conclude that G(&) deÞned by (1.45) is continuous on [0, 2], and real-analytic
on ]0, 2[.

It follows that

G(0) =
(
f , *

)
.

We now look more carefully at the estimate (1.47) when &= 0 . Using integrations by
parts, for any M , there exists a seminormPM ! on S(R), such that for Re(z) ! 0,

|G(0, z)| % CPM ! (* )(1 + |z|)# M exp
$"

2
|z|2

%
.
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Here C does not depend onb and a. Recall that the constant appearing in (1.49)
depends only on a seminorm of* . This proves that there exists M ! and C, such that

*
*( f , *

) *
* = |G(0)| % CPM ! (* ),

and hencef- + is a tempered distribution.

Theorem 1.6.11 . Ð Let f ' S!(R), and F be the Bargmann transform off . Then

(1.50) f (á)- + (á) exp(" | á |2) ' S!(R), !f (á)- + (á) exp(" | á |2) ' S!(R).

if and only if there exist C, N > 0 such that for all z ' C with Re(z) ! 0,

|F (z)| % C(1 + |z|)N exp(
"
2

| Im(z)|2),

and for all z ' C with Im(z) % 0,

|F (z)| % C(1 + |z|)N exp(
"
2

| Re(z)|2).

Proof. Ð The necessity of the estimates can be established as in the proof of Theo-
rem 1.6.7. Assume now that the Bargmann transform ofF has these properties.

Consider the distribution g deÞned byg(x) = 1 /
(

2f (x/
(

2) exp
$

"
2 x2

%
. We have

B(g)(z) = F (
(

2z) exp
$

"
2 z2

%
. Hence

| B(g)(z)| % C(1 + |z|)N exp
$"

2
|z|2

%

whenever Re(z) ! 0. We also have g(á) exp
$

$ "
2 | á |2

%
= f (á/

(
2) ' S!(R). By

Lemma 1.6.10, we have g- ' S!(R), and hence f (á)- (á) exp(" | á |2) ' S!(R). We
apply the same method for !f .

Remark 1.6.12 . Ð It still remains open to characterize the entire functions F that
satisfy both estimates (1.50).
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CHAPTER 2

FURTHER RESULTS

This chapter is devoted to further extensions of theorems stated in the previous
chapter. HardyÕs uncertainty principle, as stated in the distribution case, does not
give information on the structure of the solutions in the the case that we will call
sub-critical, when there are a lot of solutions, including non Gaussian. This is when
ab < 1 in Theorem 1.3.3. We show that in dimension 1, the solutions are linear and
continuous combinations of the Gaussian solutions. We will encounter this situation
a lot in the next chapters, where we study more general versions of Hardy Theorem.
We cannot obtain such a precise result in higher dimensions, but we still prove that
the solutions can also be built with Gaussian functions. All that is proved with the
use of the Bargmann transform introduced in the previous chapter. This tool allows
us to state and solve an equivalent problem on entire functions of order2. At the
end of the chapter we study also the one-sided Hardy conditions with the Bargmann
transform, and state the conjecture on the form of the solutions.

2.1. HardyÕs uncertainty principle in the sub-critical case, dimension 1

We consider here the caseab < 1 of Theorem 1.3.3. This amounts in this case to
characterize the spaceG(a, b) of distributions f such that

f (á) exp(a" (á)2) ' S!(R), !f (á) exp(b" (á)2) ' S!(R).

By Fourier inversion, G(a, b) is made of entire functions of order2. We can actually
prove the following:

Proposition 2.1.1 . Ð Let f ' G(a, b). Then f and !f satisfy pointwise estimates of
the form

(2.1) |f (x)| % C(1 + |x|)N exp($ "ax 2), | !f (! )| % C(1 + |! |)N exp($ "b! 2),

where C and N are constants depending only onf .

We see that we do not get any new elements inG(a, b) by giving conditions in S!(R)
instead of L " conditions as in (2.1). However we will see that it is not true in higher
dimensions. We need a lemma before proceeding to the proof of Proposition2.1.1.
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Lemma 2.1.2. Ð Let f ' G(a, b). Then f and !f extend to entire functions such that

(2.2) |f (z)| % C(1 + |z|)N exp(
"
b

| Im(z)|2), | !f (z)| % C(1 + |z|)N exp(
"
a

| Im(z)|2),

where C and N depend only onf . Moreover, there exist (, & > 0 such that for all
x, y ' R with |y| % ( |x|,

(2.3) |f (x + iy )| % C exp($ &x2), | !f (x + iy )| % C exp($ &x2).

Proof of Proposition 2.1.1, assuming Lemma2.1.2. Ð We have

| !f (z)| % C(1 + |z|)N exp
$"

a
| Im(z)|2

%
, | !f (x + iy )| % C exp($ &x2)

when |y| % ( |x|. As in the proof of Lemma 1.6.6, we have

|f (x)| % C
n!

(2" |x|R)n RM exp
$"

a
R2%

,

where M is an integer depending onN . Minimizing over n and R amounts to take
2"R 2 = an and for n the integer part of 2a"x 2. We Þnd

|f (x)| % C(1 + |x|)M !
exp($ "ax 2)

for someM ! > M . The estimate for !f is obtained in the same way.

Proof of Lemma 2.1.2. Ð By Fourier inversion, we have

f (x) =
,

!f exp("b| á |2), * x

-
,

where* x (! ) = exp( $ "b! 2 +2 i"x! ). The right hand side extends to an entire function
(replacing x by any complex number). Let N be the order of T = f exp("b| á |2). We
have

|,T, * z -| % CN pN (* z ),

where the semi-normpN is deÞned in (1.7). Hence

|f (z)| % C sup
%

(1 + |! | + |z|)N exp($ "b! 2 + 2 " |! || Im(z)|)

% C!(1 + |z|)N exp("/b | Im(z)|2).

The corresponding estimate for !f is obtained in the same way.
We now prove (2.3). Let f 1(z) = f (z) exp(a"z 2). The restriction of f 1 to the real

axis is in S!(R). Hence there exist a functiong and n such that g(n ) = f 1, and g has
polynomial growth. The function g extends, asf , to an entire function of order 2.
Apply Phragm•n-Lindelšf principle to g(z) exp(iCz 2), for large C, in the domain
|y| % |x|. We get

|g(x + iy )| % C(1 + |x| + |y|)m exp(2C|xy|).

By Cauchy formula, we obtain for f (z) = g(n ) (z) exp($ a"z 2) the following estimate:

|f (x + iy )| % C(1 + |x| + |y|)m !
exp($ a"x 2 + a"y 2 + 2C|xy|)

for |y| % |x|/ 2. Then, if ( is small enough and we take|y| % ( |x|, we get (2.3).
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Estimates (2.2) do not seem to characterize elements ofG(a, b), since we actually
need (2.3) to get (2.1). In order to characterize the elements ofG(a, b), we need an
equivalent deÞnition in terms of an entire function. For that purpose, we will use the
Bargmann transform introduced in Chapter 1.

Lemma 2.1.3. Ð Let f ' S!(R), and a ! 0. Let F be the Bargmann transform off .
Then f (á) exp(a" (á)2) ' S!(R) if and only if there exist C, N > 0 such that for all
z ' C,

(2.4) |F (z)| % C(1 + |z|)N exp
$"

2
1 $ a
1 + a

| Re(z)|2 +
"
2

| Im(z)|2
%
.

Proof. Ð Sincef (á) exp(a" | á |2) ' S!(R), there exist C > 0, N ' N, such that

|, f, * -| % CPN (exp($ a" (á)2)* (á))

for all Schwartz function * . We apply this to * (x) = exp( $ " (x $ z)2 + "
2 z2), and

obtain (2.4).

Now assume thatF satisÞes (2.4). This is equivalent to

(2.5) |F (
(

1 + az) exp
$"

2
az2%

| % C(1 + |z|)2N exp
$"

2
|z|2

%
,

and by Proposition 1.2.5, the function G(z) = F (
(

1 + az) exp
$

"
2 az2

%
is the

Bargmann transform of a tempered distribution T. But identifying the Bargmann
transforms, we see that f (x) exp("ax 2) = (1 + a)1/ 2T((1 + a)1/ 2x), and hence
f (á) exp(a" (á)2) ' S!(R).

Using dilations, it is su!cient to study G(a, b) for a = b < 1. It follows from
Lemma 2.1.3 that the elements of G(a, a) are characterized by two conditions on
their Bargmann transform F :

(2.6) |F (z)| % C(1 + |z|)N exp
$"

2
1 $ a
1 + a

| Re(z)|2 +
"
2

| Im(z)|2
%
.

and

(2.7) |F (z)| % C(1 + |z|)N exp
$"

2
1 $ a
1 + a

| Im(z)|2 +
"
2

| Re(z)|2
%
.

We note here that (2.6) and (2.7) imply that

(2.8) |F (z)| % C( exp(
"
2

&|z|2)

for some& < 1. in [17], it was already established that (2.8) characterizes the functions
f such that

f (x) = O(exp($ ",x 2)) , !f (! ) = O(exp($ ",! 2))

for some, > 0. Our point here is to show that (2.6) and (2.7) are a lot more precise,
and enable a characterization for Þxed, .
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Put w = "
2(1+ a) z2. By considering the odd and even parts ofF , we are lead to

characterize the entire functionsH on C for which there exist C, N such that for all
w ' C,

(2.9) |H (w)| % C(1 + |w|)N exp(|w| $ a| Re(w)|).

Theorem 1.3.3 basically proves that for a = 1 , only the polynomials satisfy this
estimate, and for a > 1, only the zero function satisÞes it.

Assume now thata < 1. There are many entire functions satisfying (2.9), including
exponential functions. Namely, exp()z ) satisÞes (2.9) if and only if ) ' K a, with

(2.10) K a = { ) ' C; |) + a| % 1 , |) $ a| % 1} .

There are many results on the description of the classes of entire function of or-
der 1 satisfying estimate similar to (2.9), where the function in the exponential is
1-homogeneous and convex. Here|w| $ a| Re(w)| is not convex in w, since the set
{ w; |w| $ a| Re(w)| % 1} is the union of two ellipses. The natural convex function
associated to our problem is the support function ofK a, deÞned by

* (w) = sup
# %K a

Re()w ).

An explicit formula for * is

* (w) =

2
|w| $ a| Re(w)| for | Re(w)| ! a'

1# a2 | Im(w)|
(

1 $ a2| Im(w)| else.

Note that * (w) % |w| $ a| Re(w)|.

Proposition 2.1.4 . Ð Let H be an entire function satisfying (2.9). Then there exists
C! > 0 such that for all w ' C,

(2.11) |H (w)| % C!(1 + |w|)N exp(* (w)) .

Proof. Ð We need to prove this better estimate for | Re(w)| % a'
1# a2 | Im(w)|.

Consider the entire function H1(w) = H (w) exp(i
(

1 $ a2w). By (2.9), we have
|H (w)| % C(1 + |w|)N on the two half-lines deÞned by| Re(w)| = a'

1# a2 | Im(w)| and
Im(w) ! 0. By Phragm•n-Lindelšf principle, this bound is valid inside the angle, and
we get the required estimate. A similar argument works for Im(z) % 0.

Proposition 2.1.5 . Ð Let H be an entire function. It satisÞes (2.11) for some C!

and N if and only if there exists a distribution µ ' S!(R2), supported by'K a, such
that

(2.12) H (w) =
"

exp()w ) dµ() ).
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Proof. Ð We will use Paley-Wiener type results of [20, 21]. There the authors char-
acterize the entire functions H that can be written as

H (w) =
"

)K a

exp()w )g() ) d2() ),

where g is square integrable on'K a with respect to the arc-length measured2. For
that, it is necessary and su!cient that H (w) exp($ * (w)) is square integrable with
respect to a measure onC naturally associated to K a. In particular, any H such that

(2.13) |H (w)| % C(1 + |w|)# M exp(* (w))

can be represented this way, ifM is large enough.
Assume that H satisÞes (2.11). We can write, for any M ,

H (w) = PM (w) + wM HM (w),

wherePM is a polynomial and HM satisÞes (2.13). By [20], wM HM (w) can be repre-
sented as (2.12), where µ is a M -th order derivative of an element ofL 2('K a). Finally,
Cauchy Formula yields

wk =
k!

2i"

"

)K a

exp()w )
d)

) k+1

for any k ! 0, so that PM (w) can also be represented this way.

We come back to the description ofG(a, a). For any t ' C with Re(t) > 0, the
Bargmann transform of x * exp($ "tx 2) is z * (1 + t)# 1/ 2 exp

$
"
2

1# t
1+ t z2

%
. The ho-

mography C(t) = 1# t
1+ t is also called the Cayley transform. It maps the half plane

{ t; Re(t) > 0} onto the open unit ball { ) ; |) | < 1} . Let

D (a, b) = { t ' C; Re(t) ! a, Re(t# 1) ! b} .

For ab < 1, it is a compact, convex domain, delimited by a circular arc and a line. For
ab = 1 , D(a, b) = { a} , and for ab > 1, D(a, b) = ! . We can now give the following
complement to Theorem1.3.3.

Theorem 2.1.6 . Ð Let f ' S!(R) and a, b > 0. Then f ' G(a, b) if and only if there
exist distributions 11, 12 on R2, supported by'D (a, b), such that

(2.14) f (x) =
"

exp($ "tx 2) d11(t) + x
"

exp($ "tx 2) d12(t).

Proof. Ð The caseab ! 1 is covered by Theorem1.3.3. Assume that ab < 1. After a
change of variables, we can always assume thata = b < 1. Let f ' G(a, a), and let F
be its Bargmann transform. By (2.6) and (2.7), we can write

F (z) = H1
$ "

2(1 + a)
z2%

+ zH2
$ "

2(1 + a)
z2%

,

where eachHi satisÞes (2.9) for some C, N > 0. By Proposition 2.1.5, we can write

F (z) =
"

exp(
")

2(1 + a)
z2) dµ1() ) + z

"
exp(

")
2(1 + a)

z2) dµ2() ),
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where µ1 and µ2 are distributions supported by 'K a. Note that t ' 'D (a, a) if and
only if (1 + a)C(t) ' 'K a. Hence we can also write

F (z) =
"

(1 + t)# 1/ 2 exp(
"
2

C(t)z2) d11(t) + z
"

(1 + t)# 1/ 2 exp(
"
2

C(t)z2) d12(t),

where 1i are supported by 'D (a, a). Formula (2.14) follows by taking inverse Barg-
mann transform.

Remark 2.1.7 . Ð Since any function f (x) = exp( $ "tx 2), for t ' D (a, b), satisÞes
|f (x)| % exp($ "ax 2) and | !f (! )| % C exp($ "bx 2), (2.14) gives directly Proposi-
tion 2.1.1. Formula (2.14) states that any element of G(a, b) is an average of Hermite
functions belonging to G(a, b). Indeed, any distribution 1 supported by 'D (a, b) can
be decomposed as a sum of partial derivatives of Þnite measures on'D (a, b): there
exist Þnite measuresm1, . . . , mN on 'D (a, b) such that for all x ' R,

f (x) =
N'

k=1

xk
"

)D (a,b)
exp($ "tx 2) dmk (t).

2.2. HardyÕs uncertainty principle in the sub-critical case, dimension d

We now discuss the sub-critical case of Theorem1.3.5. DeÞne byG(A, B ) the space
of tempered distributions satisfying (1.15). If both are non positive, we cannot expect
in general solutions to be entire functions, as will be shown in the next chapter. Unlike
dimension 1, it is not obvious that the elements of G(A, B ) are entire functions of
order 2 if A is positive and B non positive. However, whenA and B are positive, we
can prove the analogue of Proposition2.1.1:

Proposition 2.2.1 . Ð Let f ' G(A, B ), where A, B are positive matrices. Then we
have a pointwise estimate

|f (x)| % C(1 + |x|)N exp($ " ,Ax, x -), | !f (! )| % C(1 + |! |)N exp($ " ,B!, ! -),

where C and N depend only onf .

Proof. Ð Do a change of variables so thatA and B are diagonal. First prove esti-
mates as in Lemma2.1.2, then argue as in the proof of Proposition2.1.1, proving the
estimates for each variable.

Let A, B corresponding to the sub-critical case of Theorem1.3.5. We can assume
that I $ | B | is positive, doing a dilation if necessary. The Bargmann transform gives
also a characterization ofG(A, B ):
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Proposition 2.2.2 . Ð Let A, B be as above. Letf ' S!(Rd), and F its Bargmann
transform. Then f ' G(A, B ) if and only if there exist C, N > 0 such that for all
z ' Cd,

(2.15) |F (z)| % C(1 + |z|)N exp
$"

2
,C(A) Re(z), Re(z)- +

"
2

| Im(z)|2
%

and

(2.16) |F (z)| % C(1 + |z|)N exp
$"

2
,C((B ) Im(z), Im(z)- +

"
2

| Re(z)|2
%
,

for ( = 1 , $ 1.

Here C stands for the Cayley transform,

C(M ) = ( I $ M )( I + M )# 1.

This is proved as for Lemma2.1.3. We point here that the condition on I $ | B | is
technical. In the next chapter, where we consider critical pairs, we will see whatC(B )
should be replaced by, when|A| = |B | = I (Corollary 3.3.4).

If A and B are both positive, Proposition 2.2.2 is true without assumptions on
B , since C(B ) is then well deÞned. Moreover, there exists0 < & < 1 such that
,C(A)x, x - % (1 $ &)|x|2 and ,C(B )!, ! - % (1 $ &)|! |2. Combining (2.15) and (2.16),
we see that

(2.17) |F (z)| % C(1 + |z|)2 exp(
"
2

(1 $ &/2)|z|2).

The inverse Bargmann transform gives then thatf and !f are entire functions of order
2, as in Proposition 2.2.1, see [3, 17]. We will get here a more precise result, similar
to Theorem 2.1.6, but less precise.

DeÞne, forA, B positive,

D (A, B ) = { M ' S d(C); Re(M ) ! A, Re(M # 1) ! B } ,

where S d(C) is the set of complex symmetric matrices with positive real part.

Theorem 2.2.3 . Ð Let A, B be two positive matrices. Let f ' G(A, B ). There ex-
ist Þnite measures µ1, á á á, µN on S d(C), whose support in compact, polynomials
P1, . . . , PN , such that

(2.18) f (x) =
N'

i =1

Pk (x)
"

exp($ " ,Mx, x -) dµi (M ).

Here N depends only onf . Conversely, any entire function deÞned by(2.18) belongs
to some spaceG(A, B ), with A, B positive.

Proof. Ð Let F be the Bargmann transform of f . Consider, for 0 < & < 1,

K ( = { M ' S n (C); |,C(M )z, z-| % (1 $ &/2)|z|2 / z ' Cd} .

It is a compact subset of S d(C). By estimate (2.17), D (A, B ) 0 K ( , for some
& > 0. Taking Bargmann transforms of both sides of (2.18), we are lead to the
characterization of entire functions F on Cd, satisfying an estimate like |F (w)| %
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C(1 + |w|)N exp(|w|2). We can consider the odd and even parts in each variables, and
it su!ces to characterize entire functions satisfying

|F (w)| % C(1 + |w|)N exp(|w1| + á á á+ |wd|)

in terms of the exponentials exp(,w ), , ' Cd. We claim that any such function can
be represented as

(2.19) F (w) =
"

[0,1]d
exp

$
ei&1 w1 + á á áei&d wd

%
d1(/ ),

where 1 is a distribution deÞned on [0, 1]d. Indeed, when we develop both sides into
power series, we get

!1(n) = F (n ) (0).

But the estimate on F implies, by Cauchy Formula, that

|F (n ) (0)| % Cn1! á á ánd!RN # n 1 #ááá#n d exp(R1 + á á á+ Rd)

for any Ri > 0. When Ri = ni , we Þnd

|F (n ) (0)| % C(1 + |n|)N +1 / 2.

It follows that the series
.

n F (n ) (0)ein& converges to a distribution. This completes
the proof of (2.19). Going back to the Bargmann transform of f , this proves that it
can be written as

(2.20)
N'

i =1

Pi (z)
"

[0,1]d
exp

$" (1 $ &/2)
2

(ei&1 z2
1 + á á á+ ei&d z2

d)
%

d1i (/ ),

with distributions 1i deÞned on[0, 1]d. After applying inverse Bargmann transform,
we get (2.18), with distributions supported in K ( . The distributions are actually
supported by the set ofM such that

C(M ) = Diag() 1, . . . , ) d),

|) i | = 1 $ &/2, which is much smaller that 'K ( .

Remark 2.2.4 . Ð We used in the proof of Theorem2.2.3a simple Paley-Wiener type
result for entire functions of order 1, just like in the proof of Theorem 2.1.6. But this
time it can be solved easily with Fourier series. Theorem2.2.3basically proves that any
element of G(A, B ) can be represented as an average of complex Hermite functions.
Remember that whenAB has an eigenvalue, such that |, | > 1, then f = 0 , and that
the measures above are Dirac masses atM = A when the eigenvalues ofAB are 1 or
$ 1, by Theorem 1.3.5.

This result is not as precise as Theorem2.1.6, since this time we do not have control
over the support of the measures. The issue is that (2.17) is stronger than (2.15) and
(2.16). We are interested in the case where all eigenvalues ofAB are in ]0, 1], one of
them being in ]0, 1[. Do a change of variables so thatA and B are diagonal and equal.
This is possible sinceA and B are positive. The diagonal coe!cients ai are such that
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0 < a i % 1, and we can assume thata1 < 1. Just as (2.9), equations (2.15) and (2.16)
can be rewritten as

(2.21) |F (z)| % C(1 + |z|)N exp
$"

2

'

i

|z2
i |

1 + ai
$

"
2

*
*
' ai Re(z2

i )
1 + ai

*
*%.

Thus we are lead to characterize the entire functions satisfying the estimate

(2.22) |H (w)| % C(1 + |w|)N exp
$'

i

|wi | $
*
*
'

ai Re(wi )
*
*%.

An exponential function exp() 1w1 + á á á+ ) dwd) satisÞes (2.22) if and only if

() 1, . . . , ) d) ' K a1 " á á á " K ad ,

where K a is deÞned by (2.10). The indicator function of K a1 " á á á " K ad is +(w) =
* a1 (w1) + á á á+ * ad (wd), where * ai is the indicator of K ai . We do not know if there
is a Paley-Wiener Theorem for functions satisfying estimates (2.22). If they can be
represented as an average of the exponentialexp()z ), for ) ' K a1 " á á á " K ad , then
the measures in Theorem2.2.3 are necessary supported byD(A, B ), and actually
by a subset of 'D (A, B ). There is probably a relation with this set and the Shilov
boundary of 'D (A, B ).

So Þrst we would like to have the convex,1-homogeneous function+ in the expo-
nential in ( 2.22).

Conjecture 2.2.5 . Ð Let the entire function H satisfy (2.22). Then

|H (w)| % C!(1 + |w|)N !
exp(+(w))

In dimension 1, it was proved using Phragm•n-Lindelšf principle. The same
method does not seem to work. Now observe that+(w) %

.
|wi | $ ai | Re(wi )|, so by

Phragm•n-Lindelšf principle, Conjecture 2.2.5 is equivalent to:

Conjecture 2.2.6 . Ð Let the entire function H satisfy (2.22). Then

|H (w)| % C!(1 + |w|)N !
exp(

'
|wi | $ ai | Re(wi )|).

The last issue is that very few is known about Paley-Wiener results for functions
satisfying the estimate of Conjecture2.2.5, when d ! 2. We refer to [19] for recent
results. Note that [20, 21] only consider the cased = 1 .

The problem is more complicated when considering matricesA, B that are not
positive. Assume that A is positive and B invertible, as in Theorem 1.3.5. Then one
can assume thatA and B are diagonal, with coe!cients ai and bi , and that |bi | < 1.
We could assume thatai = |bi | % 1, but then I $ | B | could be non positive. The
estimates of Proposition2.2.2 can be rewritten as

(2.23) |F (z)| % C(1 + |z|)N exp
$"

2

'

i

1 $ ai

1 + ai
| Re(zi )|2 +

"
2

| Im(z)|2
%
,
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and

(2.24) |F (z)| % C(1 + |z|)N exp
$"

2

'

i

1 $ (bi

1 + (bi
| Im(zi )|2 +

"
2

| Re(z)|2
%
,

for ( = 1 , $ 1. Recall that Proposition 2.2.1 was established only whenA and B are
positive. In the general case, we do not even know iff extends to an entire function.
SinceA is positive, !f does. This would be the case if we had the following:

Conjecture 2.2.7 . Ð Let the entire function F satisfy (2.23) and (2.24). Then there
exists 0 < & < 1 such that

|F (z)| % C!(1 + |z|)N !
exp

$"
2

(1 $ &)|z|2
%
.

Note that this estimate is true for &= 0 .

2.3. One-sided HardyÕs uncertainty principle.

We conclude this chapter with a discussion on Theorem1.6.11. We do not have
a description of the distributions satisfying (1.50). We would like a description in
terms of averages of simple function satisfying these conditions, like in Theorems2.1.6
and 2.2.3. The simplest functions we think about are deÞned by (1.40). We have

B(f #,' )(z) =
1

(
2

exp($ "z () + i0 ) +
"
2

() + i0 )2).

For simplicity we will rather take the functions deÞned by

B(gw )(z) = exp
$

$
"
2

|w|2 $ "wz
%
,

so that g# + i' is proportional to f #,' .

Proposition 2.3.1 . Ð Let µ be a tempered distribution onC = R2, supported by
# = { w ' C; Re(w) ! 0, Im(w) ! 0} . The expression

(2.25) B(gµ )(z) =
"

exp
$

$
"
2

|w|2 $ "zw
%

dµ(w)

deÞnes an element ofS!(R) satisfying (1.50).

Proof. Ð Let * z (w) = exp( $ "/ 2|w|2 $ "zw )) . Sinceµ ' S!(R2), there exist C, N such
that

*
*
*
*

"
exp

$
$

"
2

|w|2 $ "zw
%

dµ(w)

*
*
*
* % CpN (* z ) % C(1 + |z|)N exp

$"
2

|z|2
%
.

By Proposition 1.2.5, gµ is a well deÞned element ofS!(R). Note that when µ is a
compactly supported measure,

gµ (x) =
(

2
"

exp($ " (x + a)2 $ i"ab $ 2i"bx ) dµ(a + ib),

and we see directly that it satisÞes (1.50).
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When µ is any distribution, we prove that F (z) = B(gµ )(z) satisÞes the estimates
of Theorem1.6.11. Let - be a smooth function, equal to1 on # , and to 0 on # $ (1+ i ).
Put - z (w) = - ($w), with $ = (1 + |z|)# 1. We have

|F (z)| =

*
*
*
*

"
- z (w)* z (w) dµ(w)

*
*
*
* % Cp(- z* z )N

% C sup
w

(1 + |w| + |z|)N exp
$

$
"
2

|w|2 $ " Re(zw)
%
,

where the supremum is taken overw such that Re(w) ! $ $, Im(w) ! $ $. If Re(z) ! 0
then Re(zw) ! $ $ Re(w) $ Im(z) Im(w) ! $| Im(z)|| Im(w)| $ O(1), so that

|F (z)| % C sup
w

(1 + |w| + |z|)N exp($ "/ 2|w|2 $ | Im(z)|| Im(w)|)

% C(1 + |z)N exp("/ 2| Im(z)|2).

The other estimate is obtained in the same way.

Conjecture 2.3.2 . Ð Assume that f ' S!(R) satisÞes (1.50). Then there exists a
tempered distribution µ on R2, supported by# , such that f = gµ .

We note that the distribution µ is not uniquely deÞned. Indeed, we have the re-
producing formula of the Bargmann space,

F (z) =
"

C
F (w) exp($ " |w|2 + "z w) dV(w),

where dV is the normalized Lebesgue measure inC = R2. So we havef = gµ , given
any f ' S!(R), taking dµ(w) = F (w) exp($ "/ 2|w|2). This is indeed a tempered
distribution, since

|F (w)| % C(1 + |w|)N exp("/ 2|w|2).

In view of (2.25), Conjecture (2.3.2) amounts to prove a Paley-Wiener type theorem
for entire functions satisfying the estimates of Theorem1.6.11, namely that they are
Laplace transforms of distributions 1 supported by # , such that exp("/ 2|á|2) d1 ' S!.
This is another type of Paley-Wiener result, for entire functions of order2, and with
an unbounded support.
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CHAPTER 3

CRITICAL AND NON CRITICAL PAIRS

In this chapter we introduce the spaceG(q, q!) of the distributions satisfying Hardy
conditions, when the quadratic forms are not necessary positive. As in the case of the
classical Hardy Theorem, the Gaussian functions play a crucial role. We show that
there are three kinds of pairs of quadratic forms: the super-critical, critical and sub-
critical pairs. We give practical characterizations of them in terms of spectral prop-
erties of their matrices. The most interesting case is the critical one, where we show
that the Gaussian elements ofG(q, q!) are parameterized by the groups of matrices
associated to the two forms. This will help us state the conjecture on the structure
of those spaces in the next chapter. In the last part of the chapter we give su!cient
conditions so that the spaceG(q, q!) does not contain any non zero element, like in
Hardy Theorem in the super-critical case.

3.1. Introduction and deÞnitions

Definition 3.1.1 . Ð Let q and q! be two non degenerate quadratic forms onRd. We
call G(q, q!) the space of the distributionsf ' S!(Rd) such that

(3.1) f (á) exp(± "q (á)) ' S!(Rd), !f (á) exp(± "q !(á)) ' S!(Rd).

Proposition 3.1.2 . Ð The spaceG(q, q!) is stable by di!erentiation and multiplica-
tion by polynomials.

This proposition is elementary.

3.1.1. Gaussian solutions. Ð In this section we will be interested in Gaussian
elements inG(q, q!). We also consider complex Gaussian functions as follows:

Definition 3.1.3 . Ð A complex Gaussian function is a function of the form

f (x) = exp( $ " ,Ax, x -),

x ' Rd, where A is a complex symmetric matrix, whose real part is positive.
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If A = B + iC , with B, C real, symmetric, and B positive, then A is invertible, and

A# 1 = ( B + CB # 1C)# 1 $ iB # 1C(B + CB # 1C)# 1.

We see that Re(A# 1) % Re(A)# 1.

Definition 3.1.4 . Ð Let q, q! be two non degenerate quadratic forms. We will call
the pair (q, q!) a sub-critical pair if G(q, q!) contains a non real Gaussian element. A
super-critical pair will be a pair such that G(q, q!) does not contain Gaussian functions.
A critical pair will be any other pair, i.e., a pair such that the Gaussian elements of
G(q, q!) exist and are all real.

In the sub-critical case, there is a lot of complex Gaussian functions inG(q, q!).
Indeed, if exp($ " ,Ax, x -) is one of them, then all gaussian functions of the form
exp($ " ,A!x, x -), with Re(A) = Re(A!), are also elements ofG(q, q!).

Proposition 3.1.5 . Ð Let q, q! be two non degenerate quadratic forms. ThenG(q, q!)
contains a Gaussian function if and only if there exists an invertible matrixP such
that |q(P x)| % |x|2, |q!(t P# 1! )| % |! |2 for all x, ! .

Proof. Ð If |q(P x)| % |x|2, |q!(t P# 1! )| % |! |2 for all x, ! , then the Gaussian func-
tion exp($ " |P# 1x|2) is in G(q, q!). Conversely assume that the Gaussian function
exp($ " ,Ax, x -) is in G(q, q!), with A complex symmetric, and Re(A) positive. Then

|q(x)| % , Re(A)x, x -, |q!(! )| %
(
Re(A# 1)!, !

)

for all x, ! . We have Re(A# 1) % Re(A)# 1, and we conclude takingP = ( Re(A))# 1/ 2.

Proposition 3.1.5 implies that if the space G(q, q!) contains a complex Gaussian
function f , then |f | ' G(q, q!).

Proposition 3.1.6 . Ð Let q, q! be two quadratic forms. Assume thatG(q, q!) contains
a Gaussian function. The pair (q, q!) is critical if and only if | det(q) det(q!)| = 1 , and
sub-critical if and only if | det(q) det(q!)| < 1.

Proof. Ð Using Proposition 3.1.5 and a change of variables, we may assume that

|q(x)| % |x|2, |q!(! )| % |! |2,

so that G(q, q!) contains the standard Gaussian function#(x) = exp( $ " |x|2).
It follows that | det(q)| % 1 and | det(q!)| % 1. If | det(q) det(q!)| < 1, we may assume

for example that q! has an eigenvalue, such that |, | < 1. Let e* be an associated
eigenvector. Chooseb > 0 such that |, | = (1 + b2)# 1, and deÞneB by B (e* ) = be* ,
B (x) = 0 for x ' e&

* . Then the non real Gaussian function

f (x) = exp( $ " , (I + iB )x, x -)

belongs toG(q, q!).
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Assume now that G(q, q!) contains a non real Gaussian function. We show that
| det(q) det(q!)| < 1. Let

f (x) = exp( $ " , () + i0 )x, x -)

belong to G(q, q!), with ) positive and 0 a non zero real symmetric matrix. We have
Re() + i0 )# 1 = ( ) + 0) # 10)# 1, and hence

|q(x)| % ,)x, x -, |q!(! )| %
(
() + 0) # 10)# 1!, !

)

for all x, ! . It follows that

| det(q) det(q!)| % det ) det(( ) + 0) # 10)# 1) < det() ) det( ) # 1) = 1 .

This completes the proof.

We now give a precise characterization of critical, sub-critical and super-critical
pairs. We begin with an algebraic one. A contraction is a matrixM such that t MM %
I , which means that |Mx | % |x| for all x ' R, where | á | stands for the Euclidean
norm.

Theorem 3.1.7 . Ð Let q(x) = ,Ax, x -, q!(! ) = ,A!!, ! - be two non degenerate
quadratic forms. The pair (q, q!) is critical if and only if AA ! is conjugated to an
orthogonal matrix. It is sub-critical if and only if it is conjugated to a contraction
that is not orthogonal. It is super-critical in any other case.

Proof. Ð Assume that (q, q!) is not super-critical. Let P be given by Proposition3.1.5.
Put B = t PAP and B ! = P# 1A! t P# 1. The eigenvalues ofB and B ! are in [$ 1, 1].
Hence |BB !x| % |x| for all x, where | á | stands for the Euclidean norm. We see
that AA ! is conjugated to a contraction. Assume moreover that(q, q!) is critical.
Then | det(B ) det(B !)| = 1 by Proposition 3.1.6, so we see thatB and B ! have their
eigenvalues of modulus1. It follows that B and B ! are orthogonal and symmetric,
and henceBB ! is orthogonal. If (q, q!) is sub-critical, then one of the eigenvalues of
B or B ! is in ]$ 1, 1[, and there existsx such that |BB !x| < |x|.

Assume now that there existsQ such that Q# 1AA !Q is a contraction. Put B =
Q# 1At Q# 1 and B ! = t QA!Q. By the polar decomposition, |B |B ! is a contraction.
The symmetric matrix |B |1/ 2B !|B |1/ 2 is conjugated to a contraction, hence it is itself
a contraction. Let P = t Q# 1|B |# 1/ 2. Then t PAP is orthogonal and P# 1A! t P# 1 is a
contraction, so that G(q, q!) contains a Gaussian function. Now use Proposition3.1.6.
If Q# 1AA !Q is an isometry, then | det(AA !)| = 1 , and the pair (q, q!) is critical. Else,
we have| det(AA !)| < 1, so the pair is sub-critical.

Theorem 3.1.7characterizes critical and sub-critical pairs in a rather inexplicit way.
We give now an explicit description in terms of the spectral properties ofAA !. The
proof is left to the reader.
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Theorem 3.1.8 . Ð Let q(x) = ,Ax, x -, q!(! ) = ,A!!, ! - be two non degenerate
quadratic forms. Then the pair (q, q!) is critical if and only if AA ! is diagonalizable
over C, with eigenvalues of modulus1. The pair (q, q!) is sub-critical if and only if
AA ! has a complex eigenvalueµ such that |µ| < 1, all its other eigenvalues have
modulus less than or equal to1, and the restriction of AA ! to the direct sum of the
characteristic spaces associated to eigenvalues of modulus1 is diagonalizable. The
pair (q, q!) is super-critical in any other case.

Remark 3.1.9 . Ð In other words, (q, q!) is critical if and only if the minimal poly-
nomial of AA ! has the form $( X ) =

3
* %! (X $ , ), with |, | = 1 for , ' %. It is

sub-critical if and only if it has the form $( X ) =
3

* %! (X $ , )n ! , with |, | % 1 for
, ' %, n* = 1 for |, | = 1 , and |µ| < 1 for someµ ' %. The pair (q, q!) is super-critical
if and only if $( X ) =

3
* %! (X $ , )n ! , with %containing , such that |, | > 1, or such

that |, | = 1 and n* ! 2.

As a corollary we have:

Corollary 3.1.10 . Ð Let q(x) = ,Ax, x - and q!(! ) = ,A!!, ! - be two non degenerate
quadratic forms. Assume that | det(AA !)| > 1, or more generally that AA ! has a
complex eigenvalue, such that |, | > 1. Then (q, q!) is super-critical.

Given a non degenerate quadratic formq, deÞne the group

(3.2) O(q) = { P ' GL d(R); q(Px) = q(x) / x ' Rd} .

If A is an invertible matrix, we deÞne also

(3.3) O(A) = { P ' GL d(R); t PAP = A} .

When (q, q!) is critical, all Gaussian elements ofG(q, q!) are real. We will describe
them. After a change of variable, we may assume that the associated matricesA and
A! are orthogonal and symmetric.

Theorem 3.1.11 . Ð Let q(x) = ,Ax, x -, q!(! ) = ,A!!, ! -, with matrices A, A ! or-
thogonal and symmetric. The Gaussian elements ofG(q, q!) are precisely given by the
functions

exp($ " |g(x)|2),

where the matrix g belongs to the groupO(q) 1 O(q!).

The Cayley transform of a complex matrix M is deÞned by

C(M ) = ( I $ M )( I + M )# 1.

The Cayley transform appeared in the proof of Theorem1.3.1, as naturally involved
in the computation of Bargmann transforms of Gaussian functions. Indeed, iff (x) =
exp($ " ,Mx, x -), with Re(M ) positive, then

(3.4) B(f )(z) = det( I + M )# 1 exp
$"

2
,C(M )z, z-

%
.
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We see immediately that positive matricesM are transformed through C in matrices
N such that I $ N t N is positive. We have alsoC2(M ) = M and C(M # 1) = $ C(M ).

Theorem 3.1.11 relies on pure bilinear algebra. It is a direct consequence of the
following.

Theorem 3.1.12 . Ð Let A, A ! be two orthogonal symmetric matrices. LetM be a
positive matrix. Then

(3.5) |,Ax, x -| % ,Mx, x - / x ' Rd, |,A!x, x -| %
(
M # 1!, !

)
/ ! ' Rd

if and only if
(

M ' O(A) 1 O(A!).

Lemma 3.1.13. Ð Let k1, k2 ' N such that k1 + k2 = d. Denote any x ' Rd by
x = ( x1, x2), with xi ' Rki . Put q(x) = |x1|2 $ | x2|2. Let M be a positive matrix. Let
N = C(M ). Then |q(x)| % ,Mx, x - for all x if and only if

(3.6) ,Nx, x - % 2|x1||x2|

for all x ' Rd.

Proof. Ð We will use the conjugate function of a convex function* , which is given by
its Legendre transform * ( (x) = sup x ! 2,x, x !- $ * (x!). We have

sup
x !

$
2,x, x !- $ , Mx !, x!- $ | x! |2

%
$ | x|2/ 2 =

1
2

,Nx, x -.

Hence
1
2

,Nx, x - % sup
x !

$
2,x, x !- $ 2 max(|x!

1|2, |x!
2|2)

%
$ | x|2/ 2

= ( |x1| + |x2|)2/ 2 $ | x|2/ 2 = |x1||x2|.

For the converse, recall thatC(N ) = M . Hence

1
2

,Mx, x - = sup
x !

$
2,x, x !- $ , Nx !, x!- $ | x! |2

%
$ | x|2/ 2

! sup
x !

$
2,x, x !- $ 2|x!

1||x!
2| $ | x! |2

%
$ | x|2/ 2

= |q(x)|/ 2,

which completes the proof.

We will prove Theorems 3.1.12and 3.1.11in di"erent steps. Let us take notations.
Let M be a positive matrix. Let N be the Cayley transform of M , E1 = Ker(A $ I ),
E !

1 = Ker(A! $ I ) , E2 = Ker(A + I ) and E !
2 = Ker(A! + I ). We have the orthogonal

decompositions
Rd = E1 . E2 = E !

1 . E !
2.

By Lemma 3.1.13, (3.5) is equivalent to

(3.7) $ 2|x!
1||x!

2| % ,Nx, x - % 2|x1||x2|,
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where x1, x2, x!
1, x!

2 are the components ofx in the orthogonal decompositions given
above. Theorem3.1.12amounts to show that under Conditions (3.7), M 1/ 2 ' O(A) 1
O(A!).

We will Þrst consider the case whereA and A! commute.

Proposition 3.1.14 . Ð Let A, A ! be two orthogonal and symmetric matrices. Assume
that A and A! commute. Let M be a positive matrix such thatN = C(M ) satisÞes
(3.7). Then M 1/ 2 ' O(A) 1 O(A!).

Proof. Ð A fundamental example is when

A = A! =

4
1 0

0 $ 1

5

.

We have
|,Nx, x -| % 2|x1||x2|

for all x = ( x1, x2) ' R2. It follows from homogeneity that

N =

4
0 v

v 0

5

,

for somev ' ] $ 1, 1[ (recall that I $ tNN is positive). Then we can compute

M =
1

1 $ v2

4
1 + v2 $ 2v

$ 2v 1 + v2

5

, M 1/ 2 =
1
2

4
t + t# 1 t $ t# 1

t $ t# 1 t + t# 1

5

,

with t = ( 1# v
1+ v )1/ 2. We clearly haveM 1/ 2 ' O(A).

Assume now that A = A! and d ! 2. The matrix N satisÞes

|,Nx, x -| % 2|x1||x2|,

hence, in the orthogonal decompositionRd = E1 . E2, N has a bloc form

N =

4
0 v
t v 0

5

,

for some matrix v, with d1 lines and d2 columns, such that I $ t vv is positive. There
exist ki ' O(di ) such that k# 1

1 vk2 is a quasidiagonal matrix, with zero entries in last
position, if any. Since the matrix

4
k1 0

0 k2

5

belongs toO(A), we can assume thatv is such a quasidiagonal matrix. ThenN has
a bloc decomposition, whose diagonal blocs are either0, or given by 2-dimensional
matrices of the form 4

0 vi

vi 0

5

,

with |vi | < 1, and the result follows from the Þrst part.
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In the general case whereA and A! commute, there is a common orthonormal basis
of eigenvectors of bothA and A!. We may assume that the spaceRd is decomposed
so that for x = ( x1, x2, x3, x4), xi ' Rdi , we have

Ax = x1 + x2 $ x3 $ x4, A!! = ! 1 $ ! 2 + ! 3 $ ! 4.

By assumption,

(3.8) $ 2|(x1, x3)||(x2, x4)| % ,Nx, x - % 2|(x1, x2)||(x3, x4)|

for all x ' Rd. We will show that N has the form

N =

6

7
7
7
7
8

0 0 0 v

0 0 w 0

0 t w 0 0
t v 0 0 0

9

:
:
:
:
;

,

wherev is a matrix with d4 columns andd1 lines, andw hasd2 lines andd3 columns.
Hence|,Nx, x -| % 2|(x1, x2)||(x3, x4)| and |,Nx, x -| % 2|(x1, x3)||(x2, x4)|, so that we
can conclude from the previous case.

Consider the canonical basis(e1, . . . , ed) of Rd. When we apply (3.8) to x = ei , we
obtain

(3.9) ,Nei , ei - = 0 .

Moreover, taking x1 = x2 = 0 , we get

(3.10) ,N (0, 0, x3, x4), (0, 0, x3, x4)- % 0

for all x3, x4. The quadratic form on Rd3 + d4 deÞned by (3.10) is semi-negative,
and the trace of its representative matrix is equal to zero by (3.9). Hence
,N (0, 0, x3, x4), (0, 0, x3, x4)- = 0 . A similar argument shows that

,N (x1, x2, 0, 0), (x1, x2, 0, 0)- = ,N (0, x2, 0, x4), (0, x2, 0, x4)-

= ,N (x1, 0, x3, 0), (x1, 0, x3, 0)- = 0

for all x1, x2, x3, x4.
Hence N has the required form, with v and w such that I $ t vv and I $ t ww

are positive. It follows that |,Nx, x -| % 2|(x1, x2)||(x3, x4)| and |,Nx, x -| %
2|(x1, x3)||(x2, x4)|, for all x ' Rd. We conclude using the caseA = A!.

We still take the notations given before Proposition 3.1.14. It is easy to check that
A and A! commute if and only if the eigenvalues ofAA ! are all real (assumingA, A !

are both orthogonal and symmetric matrices). We now consider the opposite case,
namely the case whereAA ! has no real eigenvalue. This happens exactly when the
spacesE1, E2, E !

1, E !
2 do not intersect each other.

Proposition 3.1.15 . Ð Assume thatAA ! has no real eigenvalue. If (3.7) is satisÞed,
then M 1/ 2 ' O(A) 1 O(A!).
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Proof. Ð In this case the dimensiond is even, andE1, E2, E !
1, and E !

2 have dimension
d/ 2. Doing a rotation if necessary, we may assume thatE1 = { (x1, 0); x1 ' Rd/ 2} ,
E2 = { (0, x2); x2 ' Rd/ 2} . Denote by x!

1 and x!
2 the orthogonal projections ofx on E !

1
and E !

2 respectively, and write x = ( x1, x2), x1, x2 ' Rd/ 2. Then the spacesE !
1, E !

2 are
given by a graph in the decompositionRd = Rd/ 2 " Rd/ 2: there exists an invertible
matrix # such that

E !
1 = { x ' Rd; x2 = # x1} , E !

2 = { x ' Rd; $ t # x2 = x1} .

Doing further independent rotations in the x1 and x2 variables if necessary, we are
lead to the case where# is diagonal, with positive eigenvalues. Let&1, . . . , &d/ 2 be its
diagonal entries.

Put x2 = 0 in Relation (3.7): we obtain ,N (x1, 0), (x1, 0)- % 0 for all x1 '
Rd/ 2. We also have ,N (0, x2), (0, x2)- % 0, ,N (x1, # x1), (x1, # x1)- ! 0, and
,N ($ t # x2, x2), ($ t # x2, x2)- ! 0. Let (ei ) be the canonical basis ofRd/ 2, so
that # ei = &i ei . Taking x1 = x2 = ei , we obtain ,N (ei , ei ), (ei , ei )- ! 0 and
,N ($ ei , ei ), ($ ei , ei )- ! 0. Summing the two quantities, we see that

0 % ,N (ei , ei ), (ei , ei )- + ,N ($ ei , ei ), ($ ei , ei )-

= 2 ,N (ei , 0), (ei , 0)- + 2 ,N (0, ei ), (0, ei )- % 0.

This gives ,N (ei , 0), (ei , 0)- = 0 . But since ,N (x1, 0), (x1, 0)- % 0 for all x1, we must
have ,N (x1, 0), (x1, 0)- = 0 . We can prove in the same way that,N (0, x2), (0, x2)- = 0
for all x2. It follows that there exists a matrix v such that

N =

4
0 v
t v 0

5

.

By Proposition 3.1.14, we have M 1/ 2 ' O(A). By symmetry, we also haveM 1/ 2 '
O(A!), which concludes the proof.

We still take the notations given before Proposition 3.1.14.

Lemma 3.1.16. Ð Let A, A ! be two orthogonal symmetric matrices, and

F = Ker(AA ! $ I ) . Ker(AA ! + I ).

Then F is the space spanned by the common eigenvectors toA and A!.

Proof. Ð If x ' Ker(AA ! $ I ), we have AA !x = x = A!Ax , since (AA !)# 1 = A!A,
henceAA !Ax = Ax and Ax ' Ker(AA ! $ I ). We see that Ker(AA ! ± I ) are stable
by A and A!. It follows that F is spanned by eigenvectors ofA belonging to either
Ker(AA ! $ I ) or Ker(AA ! + I ). Let x ' F be such an element. We haveAA !x = (x
and Ax = µx, with (, µ ' {$ 1, 1} . It follows that A!x = (µx , and we see thatF is
spanned by common eigenvector toA and A!. Now any common eigenvector toA and
A! belongs toF , so the result follows.

Proposition 3.1.17 . Ð Let A, A ! be any orthogonal symmetric matrices. If (3.7) is
satisÞed, thenM 1/ 2 ' O(A) 1 O(A!).
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Proof. Ð Denote by F the space generated by the common eigenvectors toA and A!.
The spacesF, F & are stable by A and A!. We show now that they are stable byN ,
i.e., ,Nf, g - = 0 for all f ' F and g ' F & .

Given any x ' Rd, let x1, x2 be the projections ofx on E1 and E2, and x!
1, x!

2 be
the projection of x on E !

1, E !
2. By assumption,

(3.11) $ 2|x!
1||x!

2| % ,Nx, x - % 2|x1||x2|.

Let f ' F be a common eigenvector toA and A!. We assume for example that
f ' E1 1 E !

1.

The spacesF & 1 E1, F & 1 E2, F & 1 E !
1 and F & 1 E !

2 intersect pairwise on the null
space by deÞnition ofF . As in the proof of Proposition 3.1.15, we see that they have
the same dimension, equal todim(F & )/ 2, and in particular

F & = F & 1 E1 . F & 1 E !
1.

Take g ' F & 1 E1. Relation (3.11) gives ,Nf, f - = 0 and for all t ' R,

,N (tf + g), tf + g- = ,Ng, g- + 2 t,Nf, g - % 0.

Hence,Nf, g - = 0 . The same is true wheng ' F & 1 E !
1, since then for all t ' R,

,N (tf + g), tf + g- = ,Ng, g- + 2 t,Nf, g - ! 0.

We showed that N stabilizes F and F & . We conclude with Propositions 3.1.14
and 3.1.15, considering the restrictions ofA, A !, N to F and F & , respectively.

Proposition 3.1.17 and Lemma 3.1.13 imply Theorem 3.1.12. We proved that the
Gaussian elements ofG(q, q!) are parameterized by the group of matricesG = O(q) 1
O(q!). Let K = O(d) 1 G. Since |g(x)| = |kg(x)| for all x ' Rd, g ' G and k ' K ,
those Gaussian elements are actually parameterized by the symmetric spaceG/K . The
proof of Theorem3.1.11gives then an interesting description of the Cayley transform
of G/K . It can happen that G = K . In that case, there is only one Gaussian element
in G(q, q!). The condition when this occurs is given by the next Theorem:

Theorem 3.1.18 . Ð Let q(x) = ,Ax, x - and q!(! ) = ,A!!, ! - be two non degener-
ate quadratic forms, with A and A! symmetric and orthogonal matrices. Let F =
Ker(AA ! $ I ) . Ker(AA ! + I ). Then G(q, q!) contains only one Gaussian function if
and only if the non real eigenvalues ofAA ! have multiplicity 1 in the characteristic
polynomial of AA !, and A or A! restricted to F is the identity matrix I or $ I .

Proof. Ð By Lemma 3.1.16, F and F & are stable byA and A!. Moreover the proof of
Proposition 3.1.17shows that any matrix N satisfying (3.7) has a bloc decomposition
according to the decompositionRd = F . F & . Hence is su!ces to consider separately
the casesF = Rd and F = { 0} .

Assume that F = Rd. All the eigenvalues ofAA ! are real. After a change of vari-
ables, we can assume thatA and A! are diagonal, with diagonal coe!cients a1, . . . , an

SOCIƒTƒ MATHƒMATIQUE DE FRANCE 2009



54 CHAPTER 3. CRITICAL AND NON CRITICAL PAIRS

and a!
1, . . . , a!

n equal to 1 or $ 1. If A and A! are not equal to I or $ I , there exist
i += j such that ai += aj and a!

i += a!
j , and any Gaussian function of the form

exp
$

$ "
'

k )= i,j

x2
k $ " |g(xi , xj )|2

%
,

with g ' O(1, 1), belongs toG(q, q!). If A or A! is I or $ I , then Theorem 1.3.5 shows
that G(q, q!) contains only the standard Gaussian function.

Assume now that F = { 0} , so that all eigenvalues ofAA ! are non real. Take
the notations of the proof of Proposition 3.1.15. We can assume that the matrix #
introduced there is diagonal, with positive coe!cients. Let N satisfy (3.7). Then by
the proof of Proposition 3.1.15, we have

,Nx, x - = 0

for all x in E1 or E2. HenceN has the form

N =

4
0 v
t v 0

5

.

But by symmetry we have ,Nx, x - = 0 for x in E !
1 and E !

2. It follows that v# and # v
are antisymmetric. We have the relationsvi,j &j = $ &i vj,i and vi,j &i = $ &j vj,i on the
coe!cients of v. Hencev = 0 is the only choice if and only if all the &i are di"erent.
To conclude the proof, note that the eigenvalues ofAA ! are exactly the d numbers

(3.12)
1 $ &2

k

1 + &2
k

±
2i&k

1 + &2
k

.

Indeed, in the orthonormal basise1, . . . , ed we chose,AA ! has a representative matrix
given by 4

C(t ##) 2( I + t ##) # 1t #

$ 2(I + # t #) # 1# C(# t #)

5

,

where C is the Cayley transform. In the basise1, ed/ 2+1 , . . . , ed/ 2, ed, AA ! will have a
representative matrix which is bloc diagonal, with blocs of size2 equal to

6

8
1# ( 2

i
1+ ( 2

i

2( i
1+ ( 2

i

$ 2( i
1+ ( 2

i

1# ( 2
i

1+ ( 2
i

9

; .

Hence the eigenvalues ofAA ! are given by (3.12).

Unlike Theorem 3.1.8, the condition does not depend on the matrixAA ! itself, so
that it is di!cult to give a condition when (q, q!) is a critical pair, without A and A!

being orthogonal symmetries. Nevertheless, we have the following su!cient condition:

Corollary 3.1.19 . Ð Let q(x) = ,Ax, x - and q!(! ) = ,A!!, ! -, where A and A! are
symmetric invertible matrices. If AA ! has d distinct eigenvalues of modulus1, then
G(q, q!) contains only one Gaussian function.
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Proof. Ð As before, we can assume that the eigenvalues ofAA ! are all real or all non
real. If they are all non real, Theorem 3.1.18 gives the result. Now assume that the
eigenvalues ofAA ! are equal to 1 or $ 1. Then d % 2. The cased = 1 follows from
Theorem 1.3.3. Assume that d = 2 , and that 1 and $ 1 are its eigenvalues. Make a
change of variables so thatA and A! are diagonal, with eigenvaluesa1, a2, a!

1, a!
2 equal

to 1 or $ 1. We have a1 = a!
1 and a2 = $ a!

2, or a1 = $ a!
1 and a2 = a!

2. It follows that
A or A! is equal to I or $ I , and we conclude with Theorem1.3.5.

3.1.2. Remarks. Ð In the sub-critical case, there are real and non real Gaussian el-
ements inG(q, q!). It still seems di!cult to give a precise description of them. However
Theorem 2.1.6 gives the answer in dimension one. The general idea of our analysis
is to show that in the super-critical case,G(q, q!) does not contain a lot of solutions.
We will give singular examples whereG(q, q!) contains only singular distributions.
We will show that, for many super-critical pairs (q, q!), G(q, q!) does not contain any
function. Then we will try in some cases to describe completelyG(q, q!) when (q, q!) is
a critical pair. The conjecture that we formulate after our study is that the Gaussian
elements ofG(q, q!) generate all its elements, using averages, di"erentiation and mul-
tiplication by polynomials (see Proposition 3.1.2). For example, when(q, q!) satisÞes
the conditions of Theorem3.1.18, we expect the spaceG(q, q!) to be exactly the space
of Hermite functions associated to its unique Gaussian element. We will not be able
to show this fact, unlessq or q! is positive. For example we do not know if it is true
for q(x) = 2 x1x2 and q!(! ) = ! 2

1 $ ! 2
2 on R2.

3.1.3. Annihilating pairs of quadratic forms

Definition 3.1.20 . Ð The pair (q, q!) of non degenerate quadratic forms onRd is
called an annihilating pair if G(q, q!) = { 0} .

An annihilating pair is necessarily super-critical. If (q, q!) is annihilating, then any
f ' L 2(Rd) such that, for |x|, |! | * & ,

f (x) = O(exp($ " |q(x)|)) , !f (! ) = O(exp($ " |q!(! )|)) ,

is equal to 0. Such a property is an analogue of HardyÕs uncertainty principle for non
degenerate quadratic forms. Theorem1.3.5 gives the annihilating pairs (q, q!), when
q or q! is positive:

Proposition 3.1.21 . Ð Let A and A! be two symmetric matrices, withA positive. Let
q, q! be the quadratic forms associated toA and A!. Then the pair (q, q!) is annihilating
if and only if the matrix AA ! has an eigenvalue, such that |, | > 1.

We call a pair having this property an annihilating pair by reference to annihilating
pairs of sets, as deÞned in [14].
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Definition 3.1.22 . Ð Let E, F 0 Rd be two measurable sets. The pair(E, F ) is
called a weakly annihilating pair if any f ' L 2 with support in E and spectrum in F ,
is equal to zero. The pair is strongly annihilating if there exists0 % c < 1 such that
for all f ' L 2(Rd), with support in E ,

"

F
| !f (! )|2 d! % c#f #2

L 2 (Rd ) .

The link between DeÞnitions3.1.22and 3.1.20is the following.

Theorem 3.1.23 . Ð Assume that the pair (q, q!) of non degenerate quadratic forms
is annihilating. Let C, C! > 0, and deÞne the sets

E = { x ' Rd; |q(x)| % C} , F = { ! ' Rd; |q!(! )| % C!} .

Then any tempered distribution f with support in E and spectrum in F is equal to
zero. In particular, (E, F ) is weakly annihilating for L 2 functions.

Note that the notions of strongly/weakly annihilating pairs of sets was deÞned for
functions in L 2. It can as well be deÞned for functions inL p spaces. Classical examples
of strongly annihilating pairs are pairs of sets of Þnite measure [1]. It is proved in [25]
that the pairs (E, F ), with

E = { x ' Rd; |q(x)| % C} , F = { ! ' Rd; |q!(! )| % C!} ,

are strongly annihilating, provided the product CC! is small enough (q and q! are here
any non degenerate quadratic forms). We believe that those pairs(E, F ) are weakly
and strongly annihilating without restriction on C, C!. There are trivial counter-
examples when one of the form is degenerated.

Note, however, that particular cases can be proved using the following, which is
a corollary of the classical proof for pairs of Þnite measure ([1, 14]. An elementary
proof can be found in [6]:

Proposition 3.1.24 . Ð Assume that the subsetsE and F of Rd have the following
property: for almost everyx ' Rd, the lattice x + Zd intersects E and F on Þnite sets.
Then the pair (E, F ) is weakly annihilating.

Corollary 3.1.25 . Ð The pair of sets (E, F ), with

E = { (x, y) ' R2; |xy| % C} , F = { (!, $ ) ' R2; |!$ | % C!} ,

is weakly annihilating, for any value ofC and C!.

Note that we can also translate and take rotations of the sets above. Moreover, we
can take Þnite unions of such sets.
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3.1.4. Examples in dimension 2. Ð Assume that q is positive. After a change of
variables, we write

q(x, y) = x2 + y2, q!(!, $ ) = a! 2 + b$2,

with a, b ' R \ { 0} . Then the pair is annihilating if and only if max(|a|, |b|) > 1, by
Theorem 1.3.5.

Assume now that neither q nor q! is positive. The issue is that they may not have
a common basis of reduction as above (see Proposition3.2.1 below). So we assume
moreover that q and q! can be put, after a change of variable, in the form

q(x, y) = x2 $ y2, q!(!, $ ) = a! 2 $ b$2,

with a, b > 0. The di"erence with the previous case is that G(q, q!) += { 0} when
a = b > 1. It does not contain any Gaussian function, since| det(q) det(q!)| = a2 > 1,
but the distribution &(x $ y) deÞned by

(3.13) ,&(x $ y), * - =
"

* (x, x ) dx

belongs toG(q, q!).

Theorem 3.1.26 . Ð Let a, b > 0, and q(x, y) = x2 $ y2, q!(!, $ ) = a! 2 $ b$2. Then
G(q, q!) = { 0} if and only if max(a, b) > 1 and a += b.

Proof. Ð When max(a, b) % 1, G(q, q!) contains a Gaussian function, by Theo-
rem 3.1.8. When a = b ! 1, (3.13) gives a non zero element ofG(q, q!).

Assume now that a > b and a > 1. If we divide q! by a suitable constant, we can
assume thata > 1 > b > 0. Let f ' G(q, q!). Fix a polynomial P on R and b < t < 1.
Consider the tempered distribution TP deÞned onS(R) by

,TP , * - = , f, * ) P#t -,

where * ) P #t (x, y) = * (x)P(y) exp($ "/t |y|2). Let Q be the polynomial such that
P#t is the Fourier transform of Q#1/t . We have

,
+TP , *

-
=

,
!f , * ) Q#1/t

-
.

Using the inequality x2 $ 1/ty 2 % |x2 $ y2| $ (1/t $ 1)y2, the fact that t < 1 and
f exp(± "q ) ' S!(R2), we Þnd TP (á) exp(" | á |2) ' S!(R). In the same way, using the
fact that t > b , we get +TP (á) exp("a | á |2) ' S!(R). Theorem (1.3.4) gives then TP = 0 .
Since it is true for any polynomial P, Lemma 1.2.2 gives f = 0 .

Remark 3.1.27 . Ð Theorem 5.3.2 will describe the elements ofG(q, q!) when a =
b > 1, while Theorem 5.1.6 describesG(q, q!) for a = b = 1 . We do not have any
analogue of Theorem2.1.6 for the casemax(a, b) % 1.
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3.2. Annihilating pairs when d ! 2

Let q and q! be two quadratic forms deÞned by

q(x) = ,Ax, x -, q!(! ) = ,A!!, ! -,

with A, A ! real symmetric and invertible matrices. The nature of the spaceG(q, q!) is
unchanged by a linear change of variable, soG(q, q!) is conjugated to G(÷q,÷q!), where
÷q(x) = q(P x), ÷q!(! ) = q(t P# 1! ), and P is an invertible matrix. We will focus our
attention to the case whereP can be chosen so that÷q and ÷q! are diagonal:

Proposition 3.2.1 . Ð Let A and A! be two symmetric matrices. Then there exists
an invertible matrix P such that t PAP and P# 1A!t P# 1 are diagonal if and only if
AA ! is diagonalizable overR.

Proof. Ð If P exists, then the matrix t PAA !t P# 1 is diagonal. Conversely, if
t PAA !t P# 1 is diagonal, then the two matrices t PAP and P# 1A!t P# 1 commute, so
that they can be diagonalized by the same orthogonal matrixQ. Put R = PQ. Then
t RAR and R# 1A!t R# 1 are diagonal.

Remark 3.2.2 . Ð The matrix AA ! is diagonalizable overR for example whenA or
A! is positive, or when A and A! commute.

We are reduced to quadratic forms deÞned by

(3.14) q(x) =
d'

i =1

( i x2
i , q!(! ) =

d'

i =1

, i ! 2
i ,

where ( i ' {$ 1, +1 } and , i ' R( .
As a consequence of Proposition3.1.21, the following is true.

Theorem 3.2.3 . Ð Assume that ( i = 1 for all i . Then G(q, q!) = { 0} if and only if
maxi |, i | > 1.

Without assumption on q, we can establish the following result.

Theorem 3.2.4 . Ð Let I = { i ; |, i | = max k |, k |} . Assume that all the , i , for i ' I ,
have the same sign, and thatmaxk |, k | > 1. Then G(q, q!) = { 0} .

Proof. Ð The proof follows the lines of the one of Theorem3.1.26. We can assume
that q! has the form

q!(! ) = a
d0'

i =1

! 2
k +

'

i>d 0

, i ! 2
i ,

with a > 1 and |, i | < 1 for i > d 0. Chooset such that 1 > t > maxi>d 0 |, i |. Let
f ' G(q, q!). DeÞne the distribution TP on Rd0 by

,TP , * - = , f, * ) P#t -,
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where P is a polynomial and #t (á) = exp( $ "/t | á |2). Since f ' G(q, q!), we have
TP ' G(q0, q!

0), with

q0(x) =
d0'

i =1

( i x2
i , q!

0(! ) = a|! |2.

Proposition 3.1.21 implies that TP = 0 (since a > 1), for all polynomial P, and
Lemma 1.2.2 gives f = 0 .

Remark 3.2.5 . Ð The condition given in Theorem 3.2.4 is not necessary in general,
unlessd = 1 or d = 2 , see Theorem3.1.26. When one of the quadratic forms is the
Lorentz form, the necessary and su!cient condition will be given in Theorem 5.3.1.

Corollary 3.2.6 . Ð Let q(x) =
.

i ( i x2
i , with ( i = ± 1, and q!(! ) =

. d
i =1 , i ! 2

i ,
with , i += 0 . If there exists i such that |, i | > |, j | for all j += i , and |, i | > 1. Then
G(q, q!) = { 0} .

3.3. Annihilating pairs for functions

The spaceG(q, q!), with q(x) = q!(x) = 2 ax1x2 on R2 (a > 1), is a singular case,
as shown by Theorem3.1.26. It does not contain any Gaussian function, but still
contains a non zero element. We will show here in particular that it does not contain
any function. Note that this is a consequence of Theorem5.3.2.

Definition 3.3.1 . Ð Let F (q, q!) be the space of distributionsf ' S!(Rd) such that

f (á) exp(± "q (á)) ' L 1(Rd), !f (á) exp(± "q !(á)) ' S!(Rd).

This is made of integrable functions, so that the Fourier transform is taken in the
usual sense. We can prove the following.

Theorem 3.3.2 . Ð Let q(x) = ,Ax, x - and q!(! ) = ,A!!, ! -, where A and A! are
two symmetric, invertible matrices. Assume thatAA ! is diagonalizable overR. Then
F (q, q!) = { 0} if only if AA ! has an eigenvalue, such that |, | ! 1.

For the proof, we do as usual a change of variable so thatq and q! are given by
(3.14). We will show that F (q, q!) = { 0} if if only if maxi |, i | ! 1. We will use the
following estimate, which is fundamental for the remaining of the text. It is a limiting
case of the estimates of Proposition2.2.2.

Lemma 3.3.3. Ð Let d1, d2 ' N such that d = d1 + d2. For x ' Rd, we write x =
(x1, x2), x1 ' Rd1 , x2 ' Rd2 . Let q be the quadratic formq(x) = |x1|2 $ | x2|2. Let
N > 0. Then there existsC > 0 such that for all z ' Cd,

sup
x %Rd

(1 + |x| + |z|)N exp
$

$ " (|x|2 + |q(x)|) + 2 " ,x, Re(z)- $
"
2

Re(z2)
%

% C(1 + |z|)N exp
$
" | Re(z1)|| Re(z2)| +

"
2

| Im(z)|2
%
.
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Proof. Ð Assume Þrst that q(x) ! 0. Then |x1| % |x2|. We have

(1 + |x| + |z|)N exp
$

$ " (|x|2 + |q(x)|) + 2 " ,x, Re(z)- $
"
2

Re(z2)
%

% C(1 + |x+ | + |z|)N

" exp
$

$ 2" |x1|2 + 2 " |x1|(| Re(z1)| + | Re(z2)|) $
"
2

Re(z2)
%

% C(1 + |z|)N exp
$"

2
(| Re(z1)| + | Re(z2)|)2 $

"
2

Re(z2)
%

= C(1 + |z|)N exp
$
" | Re(z1)|| Re(z2)| +

"
2

| Im(z)|2
%
.

The same estimate holds forq(x) % 0 by symmetry.

Corollary 3.3.4 . Ð We keep the notations of Lemma3.3.3. Let f ' S!(Rd). Then
f (á) exp(± "q (á)) ' S!(Rd) if and only of there existC, N > 0 such that for all z ' Cd,

| B(f )(z)| % C(1 + |z|)N exp
$
" | Re(z1)|| Re(z2)| +

"
2

| Im(z)|2
%
.

Recall that the Bargmann transform is deÞned by (1.3). Compare this with
Lemma 3.1.13.

Proof. Ð Let - be a smooth, compactly supported function onR such that - (t) = 1
for |t| % 1, and - (t) = 0 for |t| ! 2. Let

* (z, x) = exp
$

$ " |x|2 + 2 " ,x, z- $
"
2

z2%
.

We have B(f )(z) = , f, (- 2 q)* (z,á)- + , f, (1 $ - 2 q)* (z,á)-.
Sincef ' S!(Rd), we can ÞndC, M > 0 such that

|, f, * -| % CPM (* )

for all Schwartz function * . The semi-norm PM was deÞned by (1.7). Hence

|, f, (- 2 q)* (z,á)-| % CPM (( - 2 q)* (z,á))

% C sup
|q(x ) |$ 2

(1 + |x| + |z|)2M exp($ " |x|2 + 2 " ,x, Re(z)- $
"
2

Re(z2))

% C sup
x %Rd

(1 + |x| + |z|)2M exp($ " (|x|2 + |q(x)|) + 2 " ,x, Re(z)- $
"
2

Re(z2))

% C(1 + |z|)2M exp
$
" | Re(z1)|| Re(z2)| +

"
2

| Im(z)|2
%
.

We used Lemma3.3.3 for the last inequality.
Now we use the fact that f (á)- 2 q(á) exp(" |q(á)|) ' S!(Rd). There exist C, N > 0

such that for all z ' Cd,

|, f, (1 $ - 2 q)* (z,á)-| % CPN ((1 $ - 2 q)e# " |q(á) | * (z,á))

% C sup
x %Rd

(1 + |x| + |z|)2M exp($ " (|x|2 + |q(x)|) + 2 " ,x, Re(z)- $
"
2

Re(z2))

% C(1 + |z|)2N exp
$
" | Re(z1)|| Re(z2)| +

"
2

| Im(z)|2
%
,
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using Lemma3.3.3 again.
Conversely, assume that

| B(f )(z)| % C(1 + |z|)N exp
$
" | Re(z1)|| Re(z2)| +

"
2

| Im(z)|2
%

for all z ' Cd. Put F (z) = B(f )(z), and consider the entire function

G(z) =
"

Rd "
F (

(
2z1, iy ) exp

$"
2

z2
1 $

"
2

y2 $ " (y $ z2)2 +
"
2

z2
2

%
dy.

It is the Bargmann transform, with respect to the variable y, of the function
F (

(
2z1, iy ) exp

$
"
2 z2

1 $ "
2 y2

%
. The integral is absolutely convergent and we have

|G(z)| % C(1 + |z|)N exp
$"

2
|z|2

%
.

By Proposition 1.2.5, there exists a tempered distribution g ' S!(Rd) whose
Bargmann transform is G. Let F 2 denote the Fourier transform with respect to Rd2 .
It follows by identiÞcation of the Bargmann transforms that

( F 2g)(
(

2x1, x2) = f (x) exp(" (|x1|2 $ | x2|2)) ,

and we conclude that f exp("q ) ' S!(Rd). We can as well prove that f exp($ "q ) '
S!(Rd), and the proof is complete.

We are now in position to prove Theorem3.3.2.

Proof of Theorem 3.3.2. Ð If maxi |, i | < 1, chooset such that maxi |, i | < t < 1.
Then the Gaussian function #t (x) = exp( $ "/t |x|2) belongs toF (q, q!).

Assume now that , = max i |, i | ! 1. We Þrst divide q! by a constant , ! 1 so that
maxi |, i | = 1 . Then we separate the, i such that |, i | < 1, and tensorize with Hermite
functions as in the proof of Theorem3.2.4. So we will assume that all the, i are equal
to 1 or $ 1. Up to a permutation of the variables, we can decompose the spaceRd as
Rd = Rd1 " Rd2 " Rd3 " Rd4 , with d1 + á á á+ d4 = d, so that

q(x) = |x1|2 + |x2|2 $ | x3|2 $ | x4|2, q!(! ) = |! 1|2 $ | ! 2|2 + |! 3|2 $ | ! 4|2.

We apply Corollary 3.3.4 and Þnd C, N > 0 such that for all z ' Cd,

(3.15) | B(f )(z)| % C(1 + |z|)N exp
$
" | Im(z1, z3)|| Im(z2, z4)| +

"
2

| Re(z)|2
%
.

If we use the hypothesis onf we have

| B(f )(z)| %
"

Rd
|f (x)| exp(" |q(x)|)K (x, z) dx,

where
K (x, z) = exp

$
$ " (|x|2 + |q(x)|) + 2 " ,x, Re(z)- $

"
2

Re(z2)
%
.

Using Lemma 3.3.3 we have

|K (x, z)| % C exp
$
" | Re(z1, z3)|| Re(z2, z4)| +

"
2

| Im(z)|2
%
,
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and hence

(3.16) | B(f )(z)| % C exp
$
" | Re(z1, z2)|| Re(z3, z4)| +

"
2

| Im(z)|2
%
.

Put F (z) = B(f )(z). We Þx z2 real, z3 imaginary, and z4 = 0 . Apply Lemma 1.1.8
to F (z) as a function of z1 ' Cd1 . Estimates (3.15) and (3.16) imply that F (z) is
constant, as a function ofz1. Then notice that when z1 is real, we have

K (x, z) % C, lim
z1 *"

K (x, z) = 0 .

LebesgueÕs Dominated Convergence Theorem implies that

lim
z1 *"

F (z) = 0 ,

and henceF (z) = 0 .
We can prove in a similar way that, given any partial di"erential operator D of

order n ' N, DF (z) is a polynomial in z1, of degree at mostn $ 1, provided that
z4 = 0 , z3 is imaginary and z2 real.

We apply this to D = ' n 4
z4

, given any n4 ' Nd4 . Then ' n 1
z1

' n 4
z4

F (z) = 0 provided
|n1| ! | n4|. If we take extra derivatives in z2, z3, and put z = 0 , we obtain

' n
z F (0) = 0

for all n ' Nd such that |n1| ! | n4|. By symmetry, this is also true when |n1| % |n4|,
and hence all derivatives ofF at 0 are equal to0. It follows that F and f are identically
zero.

3.3.1. Other subspaces of F (q, q!). Ð We show in this paragraph that we can
extend Theorem3.3.2 to another class of functions.

We will consider quadratic forms deÞned by

(3.17) q(x) =
'

i

( i x2
i , q!(! ) =

'

i

µi ! 2
i ,

with ( i , µi ' {$ 1, +1 } .

Theorem 3.3.5 . Ð Let q, q! be deÞned by(3.17). There exists an integerN ! 1 such
that every tempered distribution f satisfying

(1 + |x|2)# N/ 2f (á) exp(± "q (á)) ' L 1(Rd), !f (á) exp(± "q !(á)) ' S!(Rd)

is identically zero.

Proof. Ð As in the proof of Theorem 3.3.2, write

q(x) = |x1|2 + |x2|2 $ | x3|2 $ | x4|2, q!(! ) = |! 1|2 $ | ! 2|2 + |! 3|2 $ | ! 4|2,

according to the decompositionRd = Rd1 " Rd2 " Rd3 " Rd4 . Let F be the Bargmann
transform of f . We can as well prove that for any partial di"erential operator D of
order n, DF (z) is a polynomial in z1, as soon asz4 = 0 , z3 is imaginary and z2 real.
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Let D = ' n 4
z4

. By analyticity, DF (z) it is still a polynomial in z1 when z2, z3 are
arbitrary, and z4 = 0 . Let ) be its degree inz1. We will show that

(3.18) ) < N + |n4| $ d1.

Fix now z4 = 0 , and z2, z3 imaginary. We also takez1 of the form z1 = i! 1, ! 1 ' Rd1 .
There exists a polynomialQ of degree|n4| such that

' n 4
z4

*
*
z4 =0

0
e# " (x 4 # z4 )2 + "

2 z2
4

1
= Q(x4)e# "x 2

4 .

The quantity exp
$

"
2 ($ ! 2

1 + z2
2 + z2

3)
%

' n 4
z4

*
*
z4 =0 F (z) is equal to

"

Rd
f (x)Q(x4) exp($ "x 2

1 + 2 i"x 1! 1 $ " (x2 $ z2)2 $ " (x3 $ z3)2 $ "x 2
4) dx.

Taking the inverse Fourier transform in ! 1, we Þnd
"

Q(x4) exp($ " (x2 $ z2)2 $ " (x3 $ z3)2 $ "x 2
4)f (x) dx2 dx3 dx4 = P(x1)e# "x 2

1 ,

where P is a polynomial of degree) , depending on the Þxedz2, z3. In order to show
(3.18), we prove that

"

Rd 1

|P(x1)|dx1

(1 + |x1|)N + |n 4 |
< & .

Indeed,
"

Rd 1

|P(x1)|dx1

(1 + |x1|)N + |n 4 |
% C(z2, z3)

"

Rd

|f (x)Q(x4)|e" (x 2
1 # x 2

2 # x 2
3 # x 2

4 ) dx
(1 + |x1|)N + |n 4 |

.

When x2
1 ! 1

2 (x2
3 + x2

4), we have

|Q(x4)|e" (x 2
1 # x 2

2 # x 2
3 # x 2

4 )

(1 + |x1|)N + |n 4 |
% C

exp("q (x) $ 2"x 2
2)

(1 + |x1| + |x3| + |x4|)N

% C
exp(" |q(x)|)
(1 + |x|)N .

An if x2
1 % 1

2 (x2
3 + x2

4), we have

|Q(x4)|e" (x 2
1 # x 2

2 # x 2
3 # x 2

4 )

(1 + |x1|)N + |n 4 |
% C

exp($ "/ 3(x2
2 + x2

3 + x2
4))

(1 + |x1|)N + |n 4 |

% C(1 + |x|)# N % C
exp(" |q(x)|)
(1 + |x|)N .

Hence we have
"

Rd 1

|P(x1)|dx1

(1 + |x1|)N + |n 4 |
% C(z2, z3)

"

Rd

|f (x)|e" |q(x ) |dx
(1 + |x|)N < & ,

and (3.18) follows. Thus
' n

z F (0) = 0
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for any n ' Nd such that |n1| ! N + |n4| $ d1. By symmetry, this is true whenever
one of the following conditions is satisÞed:

|n1| ! N $ d1 + |n4|, |n4| ! N $ d4 + |n1|

|n2| ! N $ d2 + |n3|, |n3| ! N $ d3 + |n2|.
(3.19)

Take for N the integer part of

(3.20) max
0 d1 + d4 + 1

2
,

d2 + d3 + 1
2

1
.

We claim that for any n ' Nd, one of the conditions (3.19) is satisÞed. Indeed, if this
is not the case, we have

2 % 2N $ (d1 + d4), 2 % 2N $ (d3 + d4),

which is a contradiction. Since all the partial derivatives of F at 0 vanish, we have
f = 0 .

Remark 3.3.6 . Ð A possible value ofN is given by (3.20). Note that we have indeed
N ! 1. Assume that q = q!. Then N is the smallest integer such that N ! d/ 2.
Theorem 3.3.5 is sharp when q = q!, d = 2k, and q has signature (k, k) on R2k .
Indeed, the standard Gaussian function satisÞes

(1 + |x| + |y|)# N f (x, y) exp(± " (|x|2 $ | y|2)) ' L 1(R2k )

whenever N > k . This value is also optimal form a form of signature (k + 1 , k) or
(k, k + 1) on R2k+1 . We think that, in the general case, the sharpest constant is
N = max( k, l ), where (k, l ) is the signature of q, since a Gaussian function satisÞes
the conditions if and only if N > max(k, l ).

Corollary 3.3.7 . Ð Let f ' S!(R2). Assume that

f (x, y) = O
$

exp($ 2a" |xy|)
%
, !f (!, $ ) = O

$
exp($ 2b" |!$ |)

%
.

If ab > 1, then f = 0 .

Proof. Ð We can assume thata > 1 and b = 1 . Hence

!f (!, $ ) exp(± 2"!$ ) ' L "

and
"

|f (x, y)| exp(2" |xy|)
1 + |x| + |y|

dx dy % C
"

exp($ 2" (a $ 1)|xy|)
1 + |x| + |y|

dx dy

% C
"

x %R

"

|y |$| x |

exp($ 2" (a $ 1)|xy|)
1 + |x|

dy dx

% C
"

x %R

dx
(1 + |x|)2 < & .(3.21)

The value given by (3.20) is N = 1 , we can use Theorem3.3.5, and we Þndf = 0 .
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Remark 3.3.8 . Ð Corollary 3.3.7 is an analogue of HardyÕs uncertainty principle for
the non degenerate quadratic form2xy, which is the one appearing in BeurlingÕs
uncertainty principle. The condition is sharp, since the standard Gaussian function
satisÞes the hypotheses whena = b = 1 .

We give the following corollary concerning annihilating pairs of sets.

Corollary 3.3.9 . Ð We take the notations of Theorem3.3.5. Let 1 % p, q % & ,
such that p# 1 + q# 1 = 1 . Assume that q > d# 2

N , that f ' L p(Rd) is supported in
{ x; |q(x)| % C} , and that !f is supported in { ! ; |q!(! )| % C!} , where C and C! are two
Þxed constants. Thenf = 0 .

Proof. Ð Recall that for any t ! 0, the function equal to (1 + |x|)# t when |q(x)| % C,
and to 0 when |q(x)| > C , is in the spaceL 1(Rd) if and only if t > d $ 2. Since f is
supported in { x; |q(x)| % C} ,

"

Rd

|f (x)| exp(" |q(x)|)
(1 + |x|)N dx % C#f #L p

4 "

|q(x ) |$ C
(1 + |x|)# Nq

5 1/q

< & .

Since moreover!f exp(± "q !) ' S!(Rd), Theorem 3.3.5 gives f = 0 .

Remark 3.3.10 . Ð If d = 2 , Corollary 3.3.9 applies for any values ofp, evenp = & .
When d = 3 , it applies for 1 % p < & .
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CHAPTER 4

CRITICAL PAIRS

We study in this chapter the elements ofG(q, q!) when the pair is critical. We give
necessary and su!cient condition on their Bargmann transform, and we state three
conjectures on the form of the elements ofG(q, q!).

4.1. Introduction

Take the two quadratic forms deÞned by

q(x) = ,Ax, x -, q!(! ) = ,A!!, ! -,

where A, A ! are symmetric invertible matrices. We will assume throughout in this
chapter that the pair (q, q!) is critical, which means that AA ! is diagonalizable over
C, with eigenvalues of modulus1. We can always make a change of variables so that
A and A! are orthogonal and symmetric matrices. Recall that the Gaussian functions
in the spaceG(q, q!) are all real, and are characterized by Theorem3.1.11.

We will use the Bargmann transform, introduced in the Þrst chapter. We will
show that it characterizes the elements ofG(q, q!) by the growth of their Bargmann
transform.

We now introduce useful operators linked to the Bargmann transform. The anni-
hilation and creation operators from quantum mechanics (see [3, 12]), are deÞned as
follows.

Definition 4.1.1 . Ð The creation operators are deÞned onS!(Rd) by

(4.1) zi (f ) = xi f $
1

2"
' x i f.

The annihilation operators are

(4.2) z(
i (f ) = xi f +

1
2"

' x i f.

The annihilation operators are the formal adjoints of the creation operators. The
creation operators commute, and the same is true for the annihilation operators.
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68 CHAPTER 4. CRITICAL PAIRS

Proposition 4.1.2 . Ð For all f ' S!(Rd) and z ' Cd, we have

zi B(f )(z) = B(zi f )(z),(4.3)

' zi B(f )(z) = B(z(
i f )(z).(4.4)

Moreover

($ 2" )k zk
i g(x) = e"x 2

i ' k
x i

[e# "x 2
i g(x)],(4.5)

($ 2" )k z( k
i g(x) = e# "x 2

i ' k
x i

[e"x 2
i g(x)],(4.6)

for any g ' S!(Rd).

4.2. Characterization of G(q, q!)

Assume for simplicity that we have already made a change of variables, so thatA
and A! are orthogonal and symmetric. Let

E1 = Ker(A $ I ), E2 = Ker(A + I )

and
E !

1 = Ker(A! $ I ), E !
2 = Ker(A! + I )

be the eigenspaces associated toA and A!. For x ' Rd, let x1 and x2 the projections
of x on E1 and E2, respectively. Let x!

1 and x!
2 be the projections ofx on E !

1 and E !
2.

For our analysis, we will use the fundamental estimate of Lemma3.3.3 and Corol-
lary 3.3.4. The following is an immediate consequence.

Theorem 4.2.1 . Ð Let f ' S!(Rd). Then f ' G(q, q!) if and only if there exist
C, N > 0 such that for all z ' Cd,

| B(f )(z)| % C(1 + |z|)N exp
$
" | Re(z1)|| Re(z2)| +

"
2

| Im(z)|2
%

| B(f )(z)| % C(1 + |z|)N exp
$
" | Im(z!

1)|| Im(z!
2)| +

"
2

| Re(z)|2
%
.

(4.7)

So our initial problem has been translated into the characterization of a subspace
of the Fock space.

When A = A!, we can give a more precise result. We can do a rotation in the
variables, so that

(4.8) q(x) = q!(x) = |x1|2 $ | x2|2,

with x = ( x1, x2), x1 ' Rd1 and x2 ' Rd2 (d1 + d2 = d).

Theorem 4.2.2 . Ð Let q be a quadratic form given by(4.8). Let f ' S!(Rd). Then
f ' G(q, q) if and only if there exist C, N > 0, such that for all z ' Cd,

(4.9) | B(f )(z)| % C(1 + |z|)N exp(" | Re(z1)|| Re(z2)| + " | Im(z1)|| Im(z2)|)
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Proof. Ð Fix z1 ' Rd1 , and z2 ' Rd2 . Consider the analytic function G deÞned onC(

by
G(t) = B(f )( tz1, t# 1z2).

It follows from Theorem 4.2.1 that there exist constants C, A, depending on the Þxed
z1, z2, such that for all t ' C( ,

|G(t)| % C(1 + |t| + |t|# 1)N exp(A(| Re(t)|2 + | Re(t# 1)|2))

and
|G(t)| % C(1 + |t| + |t|# 1)N exp(A(| Im(t)|2 + | Im(t# 1)|2)) .

From Lemma 1.3.2, we conclude that

|G(t)| % C!(1 + |t| + |t|# 1)N

for all t ' C( . HenceG is a polynomial in t and t# 1, and we can write

B(f )( tz1, t# 1z2) =
N'

k= # N

tk Fk (z),

where Fk are entire functions on Cd.

We will show that ( 4.9) holds for each of theFk , for some constantsC, N > 0. We
have

FN (z) = ' 2N
t B(f )( tz1, t# 1z2)

for any t ' C( , z ' Cd. Propositions 3.1.2, 4.1.2 and Theorem 4.2.1 imply that there
exist C, M > 0 such that for all z, ., t ,

|FN (z)| % C(1 + |z| + |t| + |t|# 1)M

" exp
$
" | Re(z1)|| Re(z2)| +

"
2

(| Im(tz1)|2 + | Im(z2/t )|2)
%
.

If we minimize this estimate over t, we ÞndC, M ! > 0 such that for all z ' Cd,

|FN (z)| % C(1 + |z| + |. |)M !
exp

$
" | Re(z1)|| Re(z2)| + " | Im(z1)|| Im(z2)|

%
.

We obtain by induction similar estimates for all the Fk .

When A and A! commute, we can make a change of variables so that

(4.10) q(x) = |x1|2 + |x2|2 $ | x3|2 $ | x4|2, q!(! ) = |! 1|2 $ | ! 2|2 + |! 3|2 $ | ! 4|2,

with xi , ! i ' Rdi and d1 + á á á+ d4 = d.

Theorem 4.2.3 . Ð Let q, q! be deÞned by(4.10). Let f ' S!(Rd). Then f ' G(q, q!)
if and only if there exist C, N > 0 such that for all z ' Cd,

| B(f )(z)| % C(1 + |z|)N exp
$
" | Re(z1, z2)|| Re(z3, z4)| +

"
2

| Im(z)|2
%

| B(f )(z)| % C(1 + |z|)N exp
$
" | Im(z1, z3)|| Im(z2, z4)| +

"
2

| Re(z)|2
%
.

(4.11)
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This is a reformulation of Theorem 4.2.1. When d4 = 0 , we have a more precise
version (which includes Theorem4.2.2). Here

q(x1, x2, x3) = |x1|2 + |x2|2 $ | x3|2, q!(! 1, ! 2, ! 3) = |! 1|2 $ | ! 2|2 + |! 3|2.

Put
q0(x2, x3) = |x2|2 $ | x3|2.

It is a non degenerate quadratic forms onRd2 + d3 . We will give a description of the
elements ofG(q, q!) in terms of G(q0, q0).

Theorem 4.2.4 . Ð Let f ' S!(Rd). Then f ' G(q, q!) if and only if there exist
N ' N, distributions f k ' G(q0, q0), such that

f (x1, x2, x3) =
'

k%Nd 1 ;|k |$ N

xk
1 exp($ " |x1|2)f k (x2, x3).

Proof. Ð Such distributions belong clearly to G(q, q!). Let f ' G(q, q!), and F its
Bargmann transform. By Theorem 4.2.3, there exist C, N > 0 such that for all z ' Cd,

|F (z)| % C(1 + |z|)N exp
$
" | Re(z1, z2)|| Re(z3)| +

"
2

| Im(z)|2
%

and
|F (z)| % C(1 + |z|)N exp

$
" | Im(z1, z3)|| Im(z2)| +

"
2

| Re(z)|2
%
.

Fix z2 ' Rd2 and z3 ' iRd3 . By Lemma 1.3.2, we see thatF (z1, z2, z3) is a polynomial
in z1. Hence

F (z) =
'

|k |$ N

zk
1 Fk (z2, z3),

where the Fk are entire functions depending only onz2, z3. We can express each
function Fk (z2, z3) as a polynomial in ' zi applied to F (z1, z2, z3):

Fk (z2, z3) = Pk (' zi )F (0, z2, z3).

It follows from Propositions 3.1.2, 4.1.2and Theorem4.2.3 that there exist C, N > 0,
such that for all (z2, z3) ' Cd2 + d3 ,

|Fk (z2, z3)| % C(1 + |z2| + |z3|)N exp
$
" | Re z2|| Re z3| +

"
2

| Im(z2, z3)|2
%

and

|Fk (z2, z3)| % C(1 + |z2| + |z3|)N exp
$
" | Im z2|| Im z3| +

"
2

| Re(z2, z3)|2
%
.

Using Theorem 4.2.3 again, we see thatFk = B(f k ), with f k ' G(q0, q0). Hence

B(f )(z) =
'

|k |$ N

zk
1 B(f k )(z2, z3),

which is equivalent to
f (x) =

'

|k |$ N

zk
1#(x1)f k (x2, x3),

with #(x1) = exp( $ " |x1|2). This completes the proof.
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4.3. Gaussian solutions revisited

Theorem 4.2.1 can be used to obtain the results of Theorem3.1.11. Indeed, if

f (x) = exp( $ " ,Mx, x -)

is an element ofG(q, q!), where M is a symmetric complex matrix whose real part is
positive, then

B(f )(z) = det( I + M )# 1/ 2 exp
$"

2
,C(M )z, z-

%
,

where C(M ) is the Cayley transform of M . The Gaussian elements are then charac-
terized by their Bargmann transforms, which has the form

exp
$"

2
,Nz, z-

%
,

where N is a real symmetric matrix such that

(4.12) $ 2|x!
1||x!

2| % ,Nx, x - % 2|x1||x2|

for all x ' Rd. Recall that x1, x2, x!
1, x!

2 denote the di"erent orthogonal projections of
x on the eigenspaces of the matricesA and A!.

Definition 4.3.1 . Ð Call by B(q, q!) the open convex set made of the symmetric ma-
trices N satisfying (4.12), and such that I $ t NN is positive.

When A and A! commute, N has a simple form. We can assume that

(4.13) q(x) = |x1|2 + |x2|2 $ | x3|2 $ | x4|2, q!(! ) = |! 1|2 $ | ! 2|2 + |! 3|2 $ | ! 4|2

as above.

Proposition 4.3.2 . Ð A matrix N belongs toB(q, q!), with (q, q!) given by (4.13), if
and only if there exists a real matrix v with d1 lines and d4 columns, a matrix w with
d2 lines and d3 columns, such thatI $ t vv and I $ t ww are positive, and such that

N =

6

7
7
7
7
8

0 0 0 v

0 0 w 0

0 t w 0 0
t v 0 0 0

9

:
:
:
:
;

.

This follows actually from the proof of Proposition 3.1.14. We could also give a
description of B(q, q!) in the cases of Propositions3.1.15and 3.1.17, but we will not
use it.

The spacesG(q, q!) are linear. Hence averages of solutions are still solutions. This
enables us to give non Gaussian elements ofG(q, q!).

Definition 4.3.3 . Ð Let µ be a Þnite measure onO(q) 1 O(q!). DeÞne

(4.14) G µ (x) =
"

O(q)+ O(q! )
exp($ " |g(x)|2) dµ(g).

This belongs to G(q, q!) by Theorem 3.1.11and Proposition 3.1.2.
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Proposition 4.3.4 . Ð The function deÞned by(4.14) is a bounded continuous func-
tion. The Fourier transform of G µ is given byG +, where 1 is the symmetric measure
of µ, deÞned by

#
* (g) d1(g) =

#
* (t g# 1) dµ(g). We haveG µ ' G(q, q!).

We can build other elements ofG(q, q!) using Proposition 3.1.2.

Theorem 4.3.5 . Ð Let N ! 1, µ1, . . . , µN be Þnite measures onO(q) 1 O(q!). Let
P1, . . . , PN be polynomials inx and in the partial derivatives with respect tox. Then
the tempered distribution deÞned by

(4.15) f =
N'

k=1

Pk (x, ' x )G µ k

belongs toG(q, q!).

Remark 4.3.6 . Ð Although G µ is a continuous and well deÞned function, the distri-
butions deÞned by (4.15) are not functions in general.

When the quadratic forms we consider are not of Lorentz type, or not positive, we
have not been able to prove the converse of Theorem4.3.5, and we state this as a
conjecture.

Conjecture 4.3.7 . Ð Let q(x) = ,Ax, x -, q!(! ) = ,A!!, ! -, where A, A ! are orthogo-
nal and symmetric. Any element ofG(q, q!) can be written in the form (4.15).

In the next chapter we will show that this is true for the Lorentz quadratic form.
Now this can be stated in a simpler way whenG(q, q!) contains only one Gaussian
element (see Theorem3.1.18).

Conjecture 4.3.8 . Ð Let (q, q!) be a critical pair satisfying the hypotheses of The-
orem 3.1.18. Let # be its unique Gaussian element. Anyf ' G(q, q!) is a Hermite
function of the form

f (x) = P(x)#(x),

where P is a polynomial.

As mentioned earlier, we can takeq(x, y) = x2 $ y2 and q!(!, $ ) = 2 !$ on R2 as an
example. In this case, Conjecture4.3.8 becomes:

Conjecture 4.3.9 . Ð Le F be an entire function on C2 satisfying the estimates

|F (z)| % C(1 + |z|)N exp
$
2| Re(z1)|| Re(z2)| + | Im(z)|2

%

and
|F (z)| % C(1 + |z|)N exp

$
|( Im z1)2 $ ( Im z2)2| + | Re(z)|2

%
.

Then F a polynomial.
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CHAPTER 5

LORENTZ QUADRATIC FORM

This chapter is devoted to the proof of Conjecture4.3.7 in some cases. The main
result is the description of G(q, q!) when q is the Lorentz form deÞned onRd+1 by

q(x, y) = x2
1 + á á á+ x2

d $ y2,

where x = ( x1, . . . , xd) ' Rd and y ' R, and when q! is any quadratic form deÞned
by

q!(!, $ ) = ( 1! 2
1 + á á á+ ( d! 2

d + ($2,

where ! ' Rd and $ ' R and (, ( i = ± 1.
We Þrst prove Conjecture 4.3.7 when q and q! are equal to the Lorentz form. In

this case the elements ofG(q, q!) have very interesting properties. We show that they
are smooth inside the Lorentz cone, while they can be singular outside. We point
out examples that vanish inside the Lorentz cone, as well as their Fourier transforms,
without vanishing identically. As a corollary we obtain the main result mentioned
above. We will complete Theorem3.2.4 and give the exact conditions onq and q! so
that G(q, q!) = { 0} , when q is the Lorentz form and q! has only diagonal terms.

5.1. The Bargmann transform of G(q, q)

Theorem 4.2.2 characterizes the Bargmann transform of the elements ofG(q, q).
In this section we will describe this space, which is the space of entire functionsF on
Cd+1 , for which there exist C, N > 0, such that for all (z, . ) ' Cd " C,

(5.1) |F (z, . )| % C(1 + |z| + |. |)N exp(" | Re(z)|| Re(. )| + " | Im(z)|| Im(. )|).

Recall that in the whole chapter, the letters C and N denote constants that may vary
from line to line.

Lemma 5.1.1. Ð Let F be an entire function satisfying (5.1). There exists a decom-
position F =

. N
k= # N Fk , with entire functions Fk satisfying the estimate

(5.2) |Fk (z, . )| % C(1 + |z| + |. |)N exp(" | Re(.z )|),
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and the homogeneity condition

(5.3) Fk (tz, t # 1. ) = tk Fk (z, . ), (t ' C( , $ N % k % N ).

Proof. Ð We proceed as in the proof of Theorem4.2.2. We showed that there exist
entire functions Fk on Cd+1 such that

B(f )( tz, t # 1. ) =
N'

k= # N

tk Fk (z, . ).

Each of the Fk satisÞes (5.1).
Relations (5.3) are obtained by taking partial derivatives at t = 0 . We prove now

(5.2). Because of (5.3), taking t = . # 1,

Fk (z, . ) = . # k Fk (.z, 1).

Using (5.1), we Þnd M, C > 0 such that for all z, . ,

|Fk (z, . )| % C|. |# k (1 + |z| + |. |)M e" | Re( ,z ) | .

This gives (5.2) for k % 0, and for |. | ! | z|# 1 when k > 0. If k > 0 and |. ||z| % 1,
write

(5.4) |Fk (z, . )| = |z|k |Fk (|z|# 1z, |z|. )| % C|z|k

and (5.2) is proved.

Let B be the open unit ball of Rd, and B its closure. Let S!
B

be the space of
distributions on Rd supported by B.

Theorem 5.1.2 . Ð Let F be an entire function onCd. Then it satisÞes(5.1) for some
C and N , if and only if there exist M ! 0, distributions µi ' S!

B
, and polynomials

Pi , such that for all z ' Cd and . ' C,

(5.5) F (z, . ) =
M'

i =1

Pi (z, . )
"

exp(" ,v, .z -) dµi (v).

Proof. Ð Use the decomposition ofF as in Lemma5.1.1. Since

|Fk (z,1)| % C(1 + |z|)N exp(" | Re(z)|),

we can apply Paley-Wiener-Schwartz Theorem. HenceFk (á, 1) is the Laplace trans-
form of a distribution 1k ' S!

B
. It follows that

Fk (z, . ) = . # k
"

exp(" ,v, .z -) d1k (v).

When k > 0, all the moments of 1k of order up to k $ 1 vanish, sinceFk is an entire
function. It follows that for k > 0, 1k can be written as

1k =
'

|# |= k

' #
v 1k,# ,
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where1k,# ' S!
B

. Integrations by parts give then (5.5). Conversely, any entire function
deÞned by (5.5) satisÞes (5.1) for some constantsC and N .

5.1.1. Description of G(q, q). Ð We now describe the spaceG(q, q) itself.

Definition 5.1.3 . Ð We deÞne fork ! 0 the injective operator Tk (µ) from S!
B

into
S!(Rd) by

B(Tk (µ))( z, . ) = . k
"

exp(" ,v, .z -) dµ(v).

This can also be done fork < 0. DeÞne byS!
B,k

be the space of distributions onRd

supported by B, that vanish on all polynomials of degree less that|k|.

Definition 5.1.4 . Ð Let k < 0. DeÞne the injective operator Tk from S!
B,k

to

S!(Rd+1 ) by

B(Tk (µ)) = . k
"

exp(" ,v, .z -) dµ(v).

These operators are well deÞned by Proposition1.2.5. Indeed, in each case, the
expression

. k
"

e",vz dµ(v)

deÞnes an element ofF . Theorems5.1.2 and 4.2.2 give actually the following.

Proposition 5.1.5 . Ð If k ! 0, Tk mapsS!
B

into G(q, q). If k < 0, it maps S!
B,k

into
G(q, q).

Theorem 5.1.6 . Ð Any element of G(q, q) can be written as a Þnite sum

f =
'

k

Pk (x, y, ' x , ' y )G µ k ,

where Pk are polynomials, andµk are Þnite measures on the Lorentz groupO(d,1).

The functions G µ k were deÞned in DeÞnition4.3.3. We will use the following fact
on the structure of the elements ofS!

B
:

Lemma 5.1.7. Ð Every µ ' S!
B

can be decomposed as a Þnite sum of derivatives of
Þnite measuresµk supported byB, that satisfy

(5.6)
"

B

|dµk (v)|
(1 $ | v|2)1/ 2

< & .
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Proof. Ð It is a standard fact that every distribution on the ball may be written as a
Þnite sum of partial derivatives of finite measures on the closed ball (see [24], chapter
III). Hence it is su!cient to decompose a finite measure as in the statement of the
lemma.

To do so, we choose local coordinates insideB, around a point v0. When the point
is inside the ball, the measure(1 $ | v|2)# 1/ 2 dµ(v) is clearly finite in a neighborhood
of v0. So we have only to consider the case|v0| = 1 . Changing coordinates, we have
to show that any finite measure dµ(t) supported by [0, 1]d is a sum of derivatives of
measuresd1(t) supported by [0, 1]d such that t# 1/ 2

1 d1(t) is finite. Write
"

* (t) dµ(t) =
"

[0,1]d

4

* (1/ 2, t !) +
" t 1

1/ 2
' s1 * (s1, t !)ds1

5

dµ(t1, t !)

=
"

* dµ 1 +
"

' s1 * (s1, s!) d1(s),

where the measuredµ1 is supported by the set{ t1 = 1 / 2} 1 [0, 1]d, and thus satisÞes
the required conclusion, and the measured1 satisÞes by definition

"

[0,1]d
t# 1/ 2
1 |d1(t)| %

"

[0,1]d

*
*
*
*
*

" t 1

1/ 2
s# 1/ 2

1 ds1

*
*
*
*
*
|dµ(t1, t !)|

%
"

[0,1]d
2(

(
t1 +

<
1/ 2)|dµ(t)| % 4|µ| < & ,

from which we conclude for the lemma.

Proof of Theorem 5.1.6. Ð Theorems 5.1.2 and 4.2.2 imply that any f ' G(q, q) can
be written as a Þnite sum

f =
'

k

Tk (µk ),

where µk ' S!
B

. Hence it su!ces to prove that each Tk (µ) can be put in this form,
given any µ ' S!

B
.

DeÞne the Gaussian function#v , for v ' B, so that B(#v )(z, . ) is proportional to
exp(" ,v, .z -). By Proposition 4.3.2, every Gaussian element ofG(q, q) is equal to #v ,
for somev. A simple computation shows that

(5.7) #v (x, y) = exp
$

$ " (x2
1 + á á á+ x2

d $ y2 +
2

1 $ | v|2
(y $ , v, x-)2)

%
,

and that

B(#v )(z, . ) =
1
2

(1 $ | v|2)1/ 2 exp(" ,v, .z -).

For any Þnite measure1 on B, deÞne

÷G µ (x, y) =
"

B
#v (x, y) d1(v).
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There exists at least one Þnite measure÷1 on O(d,1) such that ÷G + = G ÷+. We have

B( ÷G +)(z, . ) =
1
2

"

B
exp(" ,v, .z -)(1 $ | v|2)1/ 2 d1(v).

Let k ! 0 and µ ' S!
B

. By Lemma 5.1.7, there exists a decomposition

µ =
1
2

'

#

($ 1)# ' #
v

$
(1 $ | v|2)1/ 21k (v)

%
,

where each1k is a Þnite measure onB. If we use the creation and annihilation operators
of DeÞnition 4.1.1, we have

B(Tk (µ))( z, . ) =
1
2

'

#

" |# | . k (.z )# B(T0(
<

1 $ | v|21k ))( z, . )

=
'

#

" |# | B
0

! k (! z)# ÷G +k

1
(z, . ),

from which it follows that

(5.8) Tk (µ) =
'

#

" |# | ! k (! z)# ÷G +k .

This gives the result in this case.

Assume now that k < 0. Here µ ' S!
B,k

, hence there exists a decomposition

µ =
'

|# |= |k |

' #
v µ#,k ,

with µ#,k ' S!
B
. It follows that

B(Tk (µ))( z, . ) =
'

|# |= |k |

($ "z )# B(T0(µ#,k )) ,

and henceTk (µ) =
.

|# |= |k | ($ " z)# T0(µ#,k ). By the previous case,Tk (µ) has also the
required form.

5.1.2. Properties of the elements of G(q, q). Ð When d = 1 , the description of
G(q, q) is simpler. After a rotation, we can assume that

q(x, y) = q!(x, y) = 2 xy,

with (x, y) ' R2. Then the group SO(q) is made of the matrices of the form

g- =

4
3 0

0 3# 1

5

,

where 3 ' R( . Putting t = 32, we have:
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Theorem 5.1.8 . Ð Let f ' S!(R2). Then f ' G(q, q) if and only if there exist N > 0,
Þnite measuresµk on R(

+ and polynomialsPk such that

f (x, y) =
N'

k=1

Pk (x, y, ' x , ' y )
"

R#
+

exp($ "tx 2 $ "/ty 2) dµk (t).

A particular example was mentioned in the introduction. It is the function given
by f (x, y) = sgn(x) exp($ 2" |xy|). We actually have

(5.9) f (x, y) =
" "

0
xe# "tx 2 # "

t y2
t# 1/ 2 dt,

see Formula (5.14) below. It is not of the required form, because the measuret# 1/ 2 dt
is not Þnite. But cutting the integral at t = 1 , we write:

f (x, y) = x
" 1

0
e# "tx 2 # "

t y2
t# 1/ 2 dt $

1
2"

' x

" "

1
e# "tx 2 # "

t y2
t# 3/ 2 dt.

Another example is the distribution f (x, y) = &(x)1(y), see Theorem3.1.26. We
can also put it in that form using integrations by parts.

We now give properties of the elements ofG(q, q), when q is the Lorentz form
on Rd+1 .

Theorem 5.1.9 . Ð Let f ' G(q, q). Then f is a real-analytic function when y2 >
|x|2. Moreover, there exist C, M, m ! 0 such that for all (x, y) with y2 > |x|2,

|f (x, y)| % C(1 + |x| + |y|)M
*
*|x|2 $ y2

*
*# m

e# " || x |2 # y2 | .

If d = 1 , this is true for any (x, y) such that x2 += y2.

Remark 5.1.10 . Ð Even though the conditions on the elementsf of G(q, q) are given
in a distribution sense, f satisÞes in the Lorentz cone a pointwise estimate analogous
to HardyÕs uncertainty principle.

Proof. Ð When taking formally derivatives of G µ with respect to x and y under the
integral, a singularity at |v| = 1 appears. It is of the form (1 $ | v|2)# m , with m ! 0.
We will prove that the integral is still absolutely convergent provided |y| > |x|. Note
that we have the estimate

(5.10) (1 $ | v|2)# m e
# 2" ( |x |2 # y2 )# 2" ( y "$ v,x %) 2

1"| v | 2 % C(1 + |y|)2m (|y| $ | x|)# 2m

for all v ' B. The real part of

|x|2 $ y2 +
1

1 $ | v|2
(y $ , v, x-)2

is non negative, whenever(x, y) is in a complex neighborhood of some point(x0, y0)
such that |y0|2 > |x0|2. We conclude with LebesgueÕs Theorem thatGµ is real analytic
for y2 > |x|2. So is f by Theorem 5.1.6.

The following is a corollary of this proof.
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Corollary 5.1.11 . Ð Let µ ' S!
B

, and k ! 0. Then for any (x, y) such that y2 >
|x|2, we have

Tk (µ)(x, y) = 2
"

! k #v (x, y)(1 $ | v|2)# 1/ 2 dµ(v).

Here ! is the creation operator associated to the variabley.

Proof. Ð Note that this makes sense since the function

! k #v (x, y)(1 $ | v|2)# 1/ 2,

extended by 0 for |v| ! 1, is smooth and compactly supported byB , as soon as
y2 > |x|2. We can decomposeµ as a Þnite sum

µ =
1
2

'

#

($ 1)# ' #
v

$
(1 $ | v|2)1/ 2µ# (v)

%
,

where each µ# is a Þnite measure onB. We have B(#v )(z, . ) = 1
2 (1 $ | v|2)1/ 2

exp(" ,v, .z -). Put f v = 1
2 (1$ | v|2)1/ 2#v . For any ) , we have also1

2 (1$ | v|2)1/ 2' #
v f v =

(" ! z)# #v . Indeed, the Bargmann transform of both functions coincide. It follows that

B(Tk (µ))( z, . ) = . k
"

exp(" ,v, .z -) dµ(v)

=
1
2

. k
'

#

"
' #

v

$
exp(" ,v, .z -)

%
(1 $ | v|2)1/ 2 dµ# (v)

=
'

#

B(! k (" ! z)# G µ # )(z, . ).

Hence Tk (µ) =
.

# ! k (" ! z)# G µ # . In the proof of Theorem 5.1.9, we showed that
we can compute the derivatives under the integral deÞningG µ # , provided y2 > |x|2.
Hence

Tk (µ) =
'

#

"

B
! k (" ! z)# #v dµ# (v)

=
'

#

"

B
! k 1

2
(1 $ | v|2)1/ 2' #

v f v dµ# (v)

=
"

B
! k f v dµ(v),

as required.

Recall that Theorem 5.1.6 establishes that anyf ' G(q, q) can be decomposed as
a Þnite sum

f =
'

k

Tk (µk ),

where µk ' S!
B

for k ! 0, and µk ' S!
B,k

when k < 0. The following lemma, that we
will use later, proves that this decomposition is unique.
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Lemma 5.1.12. Ð Write

f =
N'

k= # N

Tk (µk ).

For any k, Tk+ N (µk ) can be expressed as a polynomial in the annihilation and creation
operators, applied tof .

Proof. Ð Using Proposition 4.1.2, we obtain

! N f =
N'

k= # N

Tk+ N (µk ) =
2N'

k=0

Tk (µk# N ).

Taking the Bargmann Transforms, we Þnd that for any a > 0,

B(! N f )(a# 1z, a. ) =
2N'

k=0

ak . k
"

e" , v,,z - dµk# N (v).

We conclude by taking derivatives at a = 1 , and induction on k.

5.2. Vanishing elements of G(q, q)

In this section, q is still the Lorentz form on Rd+1 . We want to show that the
elements ofG(q, q) cannot vanish on large sets. LetC be the light cone, deÞned by
C = { q = 0 } . The Lorentz cone is{ (x, y); y2 > |x|2} .

By Theorem 5.1.9, all distributions vanishing in an open subset of the Lorentz cone
vanishes in one connected component of it. We will Þrst exhibit non trivial elements
of G(q, q) that vanish for y2 > |x|2, and characterize them.

5.2.1. Examples of vanishing solutions. Ð For / in the unit sphere Sd# 1 of Rd,
let

E&(x, y) =
(

2e# " ( |x |2 # y2 ) &y= , x,&- .

It is a measure deÞned by,E&, * - =
(

2
#

Rd e# " |x #, x,&-&|2
* (x, ,x, / -)dx. The support

of E& is exactly the hyperplane H& of equation y = ,x, / -, which is tangent to the
light cone C, and contained in the complementary of the Lorentz cone. Whend = 1 ,
its support is the line y = /x , / ' {± 1} , which is on the light cone. Also +E& = E# &.
In fact E& can be seen as the weak limit asr * 1 of f r& deÞned in the proof of
Corollary 5.1.11. Hence its Bargmann Transform is

(5.11) B(E&)(z, . ) = e" , &,,z - .

From this expression we see thatE& = T0(&&), so it is a particular element of G(q, q),
vanishing on the Lorentz cone, as well as its Fourier transform.
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The aim of this section is to prove that every element ofG(q, q) vanishing in one
connected component the Lorentz cone arises as a (continuous) linear combination of
the E&:

(5.12)
k0'

k=1

Pk (x, y, ' x , ' y )Em k

where Pk are polynomials, mk distributions on Sd# 1. Here, if m is a distribution on
Sd# 1, Em is deÞned by

,Em , * - =
"

Sd " 1

"

Rd
* (x, ,x, / -)e# " |x |2 + " , x,&- 2

dx dm(/ ),

which will be formally denoted by

Em =
"

Sd " 1

E&(x, y) dm(/ ).

In particular, if a solution vanishes in one component ofC+ , it vanishes in the whole
coneC+ , as well as its Fourier Transform. The idea of the proof is to show that any
µk arising in the decomposition

f =
'

k

Tk (µk )

is supported by the unit sphereSd# 1 instead of B.

5.2.2. Characterization of vanishing solutions. Ð We deÞne for |v| < 1 the
function * v (x, y):

* v (x, y) = e
# 2" ( y "$ v,x %) 2

1"| v | 2 (1 $ | v|2)# 1/ 2.

Note that v * * v (x, y), extended by 0 when |v| ! 1, is a smooth function with
support equal to B, as long as|y| > |x|, since then(y $ , v, x-)2 ! (|y| $ | x|)2.

We Þrst begin with a proposition of independent interest.

Proposition 5.2.1 . Ð Let µ ' S!
B
, and k ! 0. Assume that

(5.13) Tk (µ)(x, y) = 0

for any y > |x|. Then the distribution µ is supported by the unit sphereSd# 1.

Proof. Ð First consider the casek = 0 . By assumption,
"

(1 $ | v|2)# 1/ 2e
# 2" ( y "$ v,x %) 2

1"| v | 2 dµ(v) = 0

for all y > |x| (see Lemma5.1.11). We want Þrst to replace the integrated term

e
# 2" ( y "$ v,x %) 2

1"| v | 2 by the more suitable e
# ( y "$ v,x %)

(1 "| v | 2 ) 1 / 2 . We will use a classical formula, which
is linked to the principle of subordination ([26], p46):

(5.14) e#| ' | =
1

(
"

" "

0
e# u e# $ 2

4u u# 1/ 2 du.
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We will show that

(5.15)
"

e
# y "$ v,x %'

1"| v | 2 (1 $ | v|2)# 1/ 2 dµ(v) = 0

for all y > |x|, which makes sense since we test the distributionµ on a smooth function
in v, as long asy > |x|.

Put 0(x, y, v) = y#, v,x -(
1#| v |2

. We remark that the double integral

" "
(1 $ | v|2)# N e# u

(
u

e# $ ( x,y,v ) 2

4u du d1(v)

is absolutely convergent wheneverN ! 0, y > |x|, and for any finite measure d1.
Hence a direct use of FubiniÕs Theorem yields (5.15) when µ is a measure. Otherwise
we write µ as a finite sum of derivatives of finite measures supported byB (see [24],
chapter III), integrate by parts, and exchange derivatives and integration in v, and
still obtain ( 5.15).

Now we take derivatives with respect to x in (5.15), and let x = 0 . For any poly-
nomial P on Rd,

(5.16)
"

P
=

v
(1 $ | v|2)1/ 2

>
e# y(1#| v |2 ) " 1 / 2

(1 $ | v|2)# 1/ 2 dµ(v) = 0 .

To conclude it is su!cient to show that (1 $ | v|2)N d µ(v) = 0 , for N big enough,
depending on the order of the distribution µ. By density of the polynomials, it is
su!cient to show that

(5.17)
"

Q(v)(1 $ | v|2)N dµ(v) = 0

for any homogeneous polynomialQ and N big enough, but Þxed. We want to deduce
(5.17) from ( 5.16), with P deÞned by

P

4
v

<
1 $ | v|2

5

=
Q(v)

(1 $ | v|2)k/ 2
,

and k = deg(Q). We use the fact that

(5.18)
" "

0
e# y(1#| v |2 ) " 1 / 2

y2N + k dy = C(1 $ | v|2)N +( k+1) / 2.

We remark that the double integral
" "

|Q(v)|
<

1 $ | v|2
# N 0 # k# 1

e# y(1#| v |2 ) " 1 / 2
y2N + k dy d1(v)

is absolutely convergent for anyN, N 0 such that N ! N0, and any finite measure1.
Hence, whenµ is a finite measure, the exchange of integrations iny and v is a

consequence of FubiniÕs Theorem, takingN = 1 for example, and we get (5.17). For
a general distribution, we write µ as a sum of derivatives of order up toN0 of finite
measuresd1 of S!

B
. We conclude that (1 $ | v|2)N dµ(v) = 0 , for any N ! N0, which

proves that dµ is supported by Sd# 1.
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Consider now the casek > 0. By Proposition 4.1.2, we have

B(T0(' k
v1

µ)) = ( $ ".z 1)k
"

e",vz dµ(v)

= ( $ "z 1)k B(Tk (µ))( z, . )

= B
$
($ " z1)k Tk (µ)

%
(z, . ).

Since Tk (µ)(x, y) = 0 for y > |x|, the same is true for ($ " z1)k Tk (µ). Hence
T0(' k

v1
µ))( x, y) = 0 for y > |x|. By the previous case,' k

v1
µ = 0 in B. This is actually

true for any derivative in v of order k, and we conclude thatµ is given by a polynomial
inside the ball.

We are thus lead to prove that if dµ(v) = P(v) dv, where P is a polynomial, and
if Tk (µ) vanishes for y > |x|, then P = 0 . But if this is the case, we have, using
Lemma 5.1.11, and Formula (4.5), for all y > |x|,

"
(1 $ | v|2)# 1/ 2' k

y

?
e

# 2" 2" ( y "$ v,x %) 2

1"| v | 2

@
P(v) dv = 0 .

We conclude as before, using Relation (5.14), that
"

(1 $ | v|2)# (k+1) / 2e
# y "$ v,x %'

1"| v | 2 P(v) dv = 0 .

Then we take derivatives in x, let x = 0 , use (5.18), and Þnd Þnally that (5.17) holds
for dµ(v) = P(v) dv. HenceP = 0 .

Theorem 5.2.2 . Ð Suppose that f ' G(q, q) vanishes on an open subset of the
Lorentz cone. Then it is can be written as(5.12).

Proof. Ð By real analyticity of the solutions (see Theorem 5.1.9), f vanishes is a
connected component ofC+ , for example in the set { y > |x|} . We know that f can
be put in the form

f =
k0'

k= # k0

Tk (µk ).

We want to show that every µk is a distribution supported by the unit sphere Sd# 1.

By Lemma 5.1.12, there exist polynomials Pk such that

Tk+ k0 (µk ) = Pk (z, z( , ! , ! ( )f.

HenceTk+ k0 (µk ) vanishes on the cone, and by Proposition5.2.1, we obtain that µk

is supported by Sd# 1. The structure of distributions supported by Sd# 1 is known
(see [24], chapter III). It follows that B(f ) has the form

B(f )(z, . ) =
'

#,k

z# . k
"

Sd " 1

e",z& dm#,k (/ )
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where eachm#,k is a distribution deÞned on the sphere. But this is the Bargmann
Transform of

(5.19)
'

#,k

z# ! k E m #,k ,

hencef is equal to (5.19).

5.2.3. Weak uncertainty principles for Lorentz form. Ð Let us consider more
precisely the cased = 1 . The unit sphere is reduced to{$ 1, 1} . All the distributions
of the form Em are in this case combinations of&y= x and &y= # x . We do a rotation
in the variables so that we consider the form2xy instead of y2 $ x2. The following is
true.

Theorem 5.2.3 . Ð Let f ' G(q, q). If f vanishes on an open set, then it is a Þnite
linear combination of the distributions

xk ) &(l ) (y), &(k ) (x) ) yl .

Proof. Ð It is easy to see that these distributions are those of type (5.12). We can
assume, since the four quadrants are equivalent, thatf vanishes in a subset of{ x >
0, y > 0} . We conclude using Theorem5.2.2.

Theorem 5.2.2 is rather restrictive. Nevertheless a lot of solutions can be put in the
form (5.12). Some solutions are even locally integrable functions. For example take
2 equal to the surface measure on the unit sphere whend > 1. Up to a constant we
have

(5.20) E. (x, y) =
"

Sd " 1

e# " ( |x |2 # y2 ) &y= , x,&- d2(/ ).

As an average of measures, it is a measure. It is actually locally integrable since an
easy computation shows that

(5.21) E. (x, y) = C(d)
1

|x|

=
1 $

y2

|x|2

> d " 3
2

e# " ( |x |2 # y2 ) - #| x |<y< |x | .

It has the following properties, due to (5.20) and (5.21):

Proposition 5.2.4 . Ð The function E. deÞned by(5.21) is a slowly increasing func-
tion on Rd+1 , and is in particular locally integrable. It is its own Fourier Transform,
and vanishes exactly wheny2 > |x|2. Moreover, whend ! 3, E. is in L p(Rd+1 ) for p
in the range d# 1

d# 2 < p < d + 1 . In particular, when d ! 4, E. ' L 2(Rd+1 ).

It is not obvious at Þrst glance that +E. = E. if we look at the formula (5.21). To
prove it one has to use (5.20) and the fact that +E& = E# &.

Before giving weak uncertainty principles associated to the Lorentz Form, we begin
by a lemma which will be useful.
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Lemma 5.2.5. Ð Let m be a distribution on the sphere such that
"

Sd " 1

+(, / ! , / -) dm(/ ) = 0

for all smooth + supported by a subintervalJ 0 ]0, 1[ and / ! ' Sd# 1. Then m = 0 .

Proof. Ð We Þrst prove the lemma whend = 2 . Using polar coordinates in the complex
plane, the hypothesis is rewritten as

"

T
+(cos(/ $ / !)) dm(/ ) = 0

for all smooth + supported in J . Here m is a distribution on the torus T. Using the
function cos# 1 and changing variables, we can as well assume that

"

T
[+(/ $ / !) + +(/ ! $ / )] dm(/ ) = 0

for any smooth function + supported by a Þxed subinterval ÷J of ]0, "/ 2[. Take for +
an approximate identity converging to the Dirac mass at a ' ÷J . The Þrst term tends
to the translate of m by $ a, and the second one to the translate bya. The Fourier
coe!cients of the sum, that is cos(ak) !m(k) vanish for a in a small interval. Hence
!m(k) = 0 for all k. We conclude that m = 0 .

The general case is done in the same way, using the harmonic analysis on the
sphere. The operatorL $ deÞned by

L $ (m)( / !) =
"

Sd " 1

+(, / ! , / -) dm(/ )

maps distributions deÞned onSd# 1 (and hence polynomials) into the space of contin-
uous functions. Moreover it commutes with the action of the orthogonal groupSO(d)
on Sd# 1. In fact it is a generalized convolution operator onSd# 1. It follows (see [9],
Chapter II.4) that if a distribution m(/ ) is decomposed as

m =
'

k

mk

where mk is a harmonic polynomial of orderk, and the sum converges in the distri-
bution sense, then

L $ (m) =
'

ck (+)mk ,

where the coe!cients ck (+) are the Fourier coe!cients of the operator L $ . Since
L $ (m) = 0 it follows that

ck (+)mk = 0

for any k and + supported in J . So it su!ces to prove that for any k, there exists +
such that ck (+) += 0 .
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The coe!cient ck (+) is given by the scalar product of the zonal function+(, /, ed-)
with the zonal polynomial of order k, Zk (, /, ed-), where ed = (0 , . . . , 0, 1). The zonal
polynomial is given up to a constant by the Gegenbauer polynomial

Zk (t) = (1 $ t2)# (d# 3) / 2' k
t (1 $ t2)(d# 3+2 k ) / 2.

It follows that

ck (+) =
" 1

# 1
+(t)Zk (t)(1 $ t2)(d# 3) / 2 dt.

SinceZk does not vanish, there exists a smooth+ supported in J such that Ck (+) += 0 .

We now give su!cient conditions so that the elements of G(q, q) vanish everywhere.
Let us insist on the fact that the next theorem is not true for d = 1 .

Theorem 5.2.6 . Ð Let d > 1. Let f ' G(q, q). Suppose thatf vanishes on an open
subset of the Lorentz cone, and on an open subset of the complementary invariant by
rotations in the x variable. Then f = 0 .

Proof. Ð By assumption f vanishes in a connected component of the cone. The dis-
tribution f may be written as

f =
k0'

k= # k0

Tk (µk )

and we can express eachTk+ k0 (µk ) as a polynomial in the creation and annihilation
operators applied to f by Lemma 5.1.12. Hence Tk+ k0 (µk ) vanishes on the same
set, and it su!ces to consider the casef = Tk (µ), where k ! 0 and µ ' S!

B
. We

want to show that µ = 0 . As in the proof of Proposition 5.2.1, it su!ces to consider
the casek = 0 . By Proposition 5.2.1, µ is supported by Sd# 1. Write

B(T0(µ))( z, . ) =
"

e",vz dµ(v).

The distribution µ is a finite sum of radial derivatives at r = 1 of extensions to a
neighborhood ofSd# 1 of distributions deÞned onSd# 1 (see [24], chapter III). Hence

B(T0(µ))( z, . ) =
L'

l =0

"
" l (. , /, z -)l e" , v,,z - dml (/ )

=
L'

l =0

. l ' l
, B(Em l )(z, . ),

where each distribution ml is deÞned onSd# 1. Then

T0(µ) =
L'

l =0

! l ! ( l Em l .

We will prove that mL = 0 and conclude by induction.
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What we know is that f vanishes on an open set of the form! = { (x, y); |x| '
I , y/ |x| ' J } , where I is a subinterval of ]0, & [ and J a subinterval of ]$ 1, 1[.
We can assume thatJ does not contain 0. It follows that ,T0(µ), * - = 0 whenever
* ' S!(Rd+1 ) is supported in ! .

We take * of the form * 1(|x|)* 2(x/ |x|)+(y/ |x|) where * 1 is smooth and supported
on I and + is smooth supported onJ , and * 2 is a smooth function deÞned onSd# 1.
If we denote by +|x | the function +|x | (y) = +(y/ |x|), we have

0 =
L'

l =0

"

Sd " 1

"

Rd
* 1(|x|)* 2(x/ |x|)e# " |x |2 + " ( , x,&- )2

! l ! ( l +|x | (,x, / -) dx dml (/ ).

Remark that

! l ! ( l +|x | (y) =
2L'

k= # 2L

|x|k +k (y/ |x|)

with smooth +k supported in J , and +2L (y) = y2L +(y). So if we take* 1 such that

(5.22)
" "

0
r d# 1+ k * 1(r )e# "r 2

dr = 0

for any k = $ 2L, . . . , 2L $ 1, and

(5.23)
"

Rd
r d# 1+2 L * 1(r )e# "r 2

dr = 1 ,

we see that the only remaining term is

0 =
"

Sd " 1

"

Rd
* 1(|x|)* 2(x/ |x|)e# " |x |2 + " ( , x,&- )2

(,x, / -)2L +(,x/ |x|, / -) dx dmL (/ )

=
"

Sd " 1

" "

0

"

Sd " 1

* 1(r )* 2(/ !)r 2L + d# 1, / ! , / -2L +(, / ! , / -) dr d2(/ !) dmL (/ )

=
"

Sd " 1

"

Sd " 1

* 2(/ !), / ! , / -2L +(, / ! , / -) d2(/ !) dmL (/ ).

Replace+(t) by t# 2L +(t) (recall that + is supported away from0). Since * 2 is arbi-
trary, we get "

Sd " 1

+(, / ! , / -) dmL (/ ) = 0

for all / ! ' Sd# 1 and + supported in J . Note that the last quantity is a smooth
function of / ! . To conclude that mL = 0 we use Lemma5.2.5.

Remark 5.2.7 . Ð The rotation invariance of the set is fundamental. If we use (5.12)
with measures mk supported on small caps of the sphere, then the corresponding
solution vanish on an open subset of the complementary of the cone.

Corollary 5.2.8 . Ð Let d ! 1. Assume that an elementf of G(q, q) vanishes on
{ y > a |x|} with 0 < a < 1. Then f = 0 .

SOCIƒTƒ MATHƒMATIQUE DE FRANCE 2009



88 CHAPTER 5. LORENTZ QUADRATIC FORM

Corollary 5.2.9 . Ð Let d > 1. If a distribution f is supported in the set{|| x|2 $
y2| < A } , and !f is supported in {|| ! |2 $ $2| < B } , for two constants A and B , then
f = 0 . Hence these two sets form an annihilating pair for distributions. In particular,
unlike the cased = 1 , there is no distribution f such that bothf and !f are supported
by the light cone.

This is an interesting complement of Theorem3.1.23. Note that the pair (q, q) is
not annihilating in the sense of DeÞnition3.1.20.

5.3. The supercritical case with Lorentz form

We give here a complement to Theorem3.2.4 in the case of a Lorentz quadratic
form. Let q be the Lorentz form, and

(5.24) q!(x, y) = a1x2
1 + á á á+ adx2

d $ by2,

where ai , b ' R \ { 0} . We can assume thatb > 0, changing q to $ q if necessary. Let
a = max i |ai |. Then according to Theorem3.2.4, the space of tempered distributions
f such that

(5.25) f (á) exp(± "q ) ' S!(Rd+1 ), !f (á) exp(± "q !) ' S!(Rd+1 )

is reduced to zero whenevermax(a, b) > 1, a += b and ai > 0 for all i . We will complete
Theorem 3.2.4 and characterize the pairs for which this is the case.

Theorem 5.3.1 . Ð Let q be the Lorentz quadratic form onRd+1 , and deÞneq! by
(5.24). Let I + = { i ; ai = a} , I # = { i ; ai = $ a} and J = { j ; |aj | < a } . Then the space
G(q, q!) of distributions satisfying (5.25) is reduced to zero if and only if one of the
four following conditions is satisÞed:

1. max(a, b) > 1 and a += b,
2. a = b > 1 and I # += !
3. a = b > 1, I # = ! and card(I + ) > 1,
4. a = b > 1, I # = ! , card(I + ) = 1 , and maxj %J |aj | > 1.

As mentioned in the remark following Theorem 3.2.4, the key point to establish
such a result is the description of the solutions in the critical case (ai = b = 1 ), which
is done in Theorem5.1.6. A particular case of Theorem5.3.1 is when ai = a = b > 1:

Theorem 5.3.2 . Ð Let q(x, y) = |x|2 $ y2, x ' Rd, y ' R, and q!(x, y) = a(|x|2 $ y2),
with a > 1. If d ! 2, then G(q, q!) = { 0} . If d = 1 , then G(q, q!) is made of the
distributions f of the form

f (x, y) =
'

k

Pk (x)&(k ) (x $ y) +
'

k

Qk (x)&(k ) (x + y),

where Pk , Qk are polynomials, and& is the Dirac measure.

We also mention here without proof an immediate corollary of Theorem4.2.4:
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Theorem 5.3.3 . Ð Let n1 ! 1, n2, n3 ! 0, such that n = n1 + n2 + n3. For x =
(x1, x2, x3) ' Rn 1 + n 2 + n 3 , and a > 1, put q(x) = |x1|2 + |x2|2 $ | x3|2 and q!(! ) =
a($| ! 1|2 + |! 2|2 $ | ! 3|2). Then G(q, q!) = { 0} .

Proof of Theorem 5.3.1 assuming Theorem5.3.2. Ð Assume that case(1) is satisÞed.
When b > a, we use Theorem (3.2.4). When a > b, the ai such that |ai | = a may
have di"erent signs. We can give a direct proof in that case. Arguing as is the proof
of Theorem (3.2.4), we can eliminate the variablesy and xj , for j ' J . We are lead to
the caseq = x2

1 + á á á+ x2
d and q! = a1x2

1 + á á á+ adx2
d, with |ai | = a > 1. Theorem 1.3.5

allows to conclude. In cases(2) and (3), we reduce as well to the case whereJ = ! .
We conclude with Theorem5.3.3 in case(2) and Theorem 5.3.2 in case(3).

We consider now case(4). Let f ' G(q, q!). We have for exampleI + = { 1} . Here
J += ! . Choose, such that a > , > max{| aj |; j = 2 , . . . , d} > 1 and put q!! = , # 1q.
Let t such that , # 1 max{| aj |; j = 2 , . . . , d} < t < 1. For any polynomial P in the
variables xj , j = 2 , . . . , d, consider the tempered distribution TP on R2 deÞned by

,TP , * - =
(
f, * (x1, y) ) P exp($ "t # 1| á |2)

)
.

Since f ' G(q, q!! ), we have TP ' G(x2
1 $ y2, a/, (x2

1 $ y2)) . Theorem 5.3.2 gives
in particular that there exists n depending only on the order off such that (x2

1 $
y2)n TP (x1, y) = 0 . Take

* (x, y) = ( x2
1 $ y2)n Q(x1, y) exp($ "t # 1(x2

1 + y2)) ,

where Q is a polynomial, and use Lemma1.2.2 to conclude that (x2
1 $ y2)n f = 0 .

Hence
f (x, y) exp("

'

j %J

x2
j ) ' S!(Rd+1 ).

For the same reason,

!f (!, $ ) exp(± " (a2! 2
2 + á á á+ ad! 2

d)) ' S!(Rd+1 ).

Theorem 1.3.5 gives f = 0 , sincemax{| aj |, j = 2 , . . . , d} > 1.
In the remaining cases, there is always a non zero element inG(q, q!). Indeed, when

max(a, b) % 1, the standard Gaussian function is a solution. And ifa = b > 1, I # = ! ,
I + = { 1} , and maxj %J aj % 1, we can takef equal to

&(x1 $ y) ) #(x2, . . . , xd),

where # is the standard Gaussian function.

We prove now Theorem5.3.2.

Proof. Ð We Þrst consider the cased ! 2. Let f ' G(q, q!). We will use the fact that
for any 1 % ) % a, f ( á'

# ) ' G(q, q). The distribution f itself belongs to G(q, q).
Theorems5.1.2 and 4.2.2 imply that f can be uniquely written as a Þnite sum

f =
'

k

Tk (µk ),
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where µk ' S!
B

. We will prove by induction on k that µk = 0 . By Lemma 5.1.12, and
the formula

($ " )k zk
1Tk (µ) = T0(' k

1 µ).

we only have to consider the casef = T0(µ).

RedeÞne the Gaussian function#! , for ( > 0, by

#! (x, y) = ( # d/ 2 exp($
"
(

(x2
1 + á á á+ x2

d + y2)) .

We have f % #1 % #! = f % #1+ ! , or equivalently
"

B(f )(x, y) exp
$

$
"
2

(|x|2 + y2) $
"
(

((x $ z)2 + ( y $ . )2)
%

dx dy

= B(f ! )((1 + ( )# 1/ 2(z, . )) exp($
" (z2 + . 2)
2(1 + ( )

),

where f ! (á) = ( # d/ 2f (
(

1 + (á). By assumption on f , f ! ' G(q, q) for ( small enough.
For |v| < 1, call * v,! (z, . ) the expression

"
exp(" ,v, xy-) exp

$
$

"
2

(x2 + y2) $
"
(

((x $ z)2 + ( y $ . )2) +
" (z2 + . 2)
2(1 + ( )

%
dx dy,

so that

B(f ! )((1 + ( )# 1/ 2(z, . )) =
"

* v,! (z, . ) dµ(v).

An straightforward computation shows that

* v,! (0, . ) =
C(( )

<
2 + ( (1 $ | v|2)

exp(
"
2

3(v, ( ). 2)

with 3(v, ( ) 3 ( 1#| v |2

4 as ( * 0. Theorem 5.1.2 implies that B(f ! )(0, . ) is a polyno-
mial. Take derivatives with respect to . , and the limit at ( = 0 . We get

"
(1 $ | v|2)n dµ(v) = 0

for n large enough. Henceµ is supported by Sd# 1.

In the same way, we have

* v,! (z,0) =
C(( )

4(v, ( )
exp($ " ,M (v, ( )z, z-),

with 4(v, ( ) 3 1 as ( * 0. Here M (v, ( ) is a real matrix such that

,M (v, ( )z, z- 3
( (z2 $ , v, z-2)

4

as ( * 0. Since B(f ! )(z,0) is a polynomial in z, we see that
"

(z2 $ , v, z-2)n dµ(v) = 0
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for n large enough. This is also true for a partial derivative ofµ, sinceT0(' 1v)(µ) can
be expressed as a polynomial in the creation and annihilation operators applied to
T0(µ). Hence "

(z2 $ , v, z-2)n P(,v, z-) dµ(v) = 0

for any polynomial P, and n large enough. It follows that

(5.26)
"

(z2 $ , v, z-2)n exp(" ,v, .z -) dµ(v) = 0

for large n, . ' C and z ' Cd.

We prove now that (5.26) implies that µ = 0 . The distribution µ may be written
as a Þnite sum

µ =
N'

k=0

' k
r mk

of radial derivatives of distributions mk on the unit sphereSd# 1. Relation (5.26) may
be rewritten as

0 =
$
z2 +

1
4" 2 ' 2

,

%n
N'

k=0

($ 1)k . k ' k
,

"

Sd " 1
exp(2i" , /, z. -) dmk (/ ).

Take real z, . , and take a Fourier transform with respect to . . We Þnd

0 = ( x2
1 + á á á+ x2

d $ y2)n
N'

k=0

($ 1)k ' k
y yk

"

Sd " 1
&y= , x,&- dmk (/ ).

Hence the distribution

g(x, y) = exp( $ " (|x|2 $ y2))
N'

k=0

($ 1)k ' k
y yk

"

Sd " 1
&y= , x,&- dmk (/ )

vanishes for|x|2 $ y2 += 0 . Since it belongs toG(q, q) by (5.12), Theorem 5.2.6 implies
that g = 0 , and henceµ = 0 . This conclude the proof whend ! 2.

When d = 1 , the previous argument may be adapted, but one has to be more
careful in the reduction of the problem, since non zero distributionsµ are allowed.
We give a simpler proof. We can assume that the two quadratic forms are given by

q(x, y) = 2 xy, q!(!, $ ) = 2 a!$,

with a > 1. Then any element ofG(q, q) can be decomposed as in Theorem5.1.8. Let
f ' G(q, q!). We will use the fact that f a(x, y) = f (x, ya# 1) belongs toG(q, q). Let g
be the Fourier transform of f with respect to the variable y. Theorem 5.1.8 implies
that g(x, y), for (x, y) += 0 , can be decomposed as

g(x, y) =
'

k,l

xk yl gk,l (x2 + y2),
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where the sum is Þnite, andgk,l are real analytic functions onR+
( . Sincef a ' G(q, q),

we also have
g(x, y) =

'

k,l

xk yl hk,l (x2 + y2/a 2),

where the sum is Þnite, andhk,l are real analytic functions on R+
( . These two expres-

sions cannot occur simultaneously, unlessg is given by a polynomial for (x, y) += 0 .
It follows that g is a sum of a polynomial, and a distribution supported by the origin
(which is a sum of derivatives of Dirac measures). The result follows.

5.4. Description of other spaces G(q, q!)

Theorem 5.4.1 . Ð Let q be the Lorentz form onRd, and q! given by

q!(! ) =
d'

i =1

( !
i !

2
i ,

with ( !
i ' {$ 1, +1 } . Then any element off of G(q, q!) can be written as

f (x) =
N'

k=1

Pk (x, ' x )
"

O(q)+ O(q! )
exp($ " |g(x)|2) dµk (g),

where Pk are polynomials andµk are Þnite measures on the groupO(q) 1 O(q!).

Proof. Ð We may write, changing the sign ofq! if necessary,

q(x) = |x1|2 + |x2|2 $ | x3|2, q!(! ) = |! 1|2 $ | ! 2|2 + |! 3|2,

with xi , ! i ' Rdi , d3 = 1 , and d1 + d2 + d3 = d. We apply Theorem 4.2.4, and then
Theorem 5.1.6 to the form |x2|2 $ | x3|2. It gives the required form for f , once we have
noticed that any matrix of the form

4
I 0

0 g0

5

,

with g0 ' O(d2, 1), belongs toO(q) 1 O(q!).

We now give two generalizations of Theorem5.1.8. The proofs are very similar to
the one of Theorem5.1.6, and we will skip them.

We will Þrst describe the space of distributionsf on R2d such that

(5.27) f (x, y) exp("
'

i

( i xi yi ) ' S!(R2d), !f (!, $ ) exp("
'

i

( !
i xi yi ) ' S!(R2d),

for all choices of( i , ( !
i ' {$ 1, +1 } . Particular examples are the distributions f such

that,

f (x, y) = O
$

exp($ 2"
'

|xi yi |)
%
,

!f (!, $ ) = O
$

exp($ 2"
'

|! i $i |)
%
.
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In view of Theorem 5.1.8, every function of the form

H µ (x, y) =
"

(R#
+ )d

exp($ "
'

i

[t i x2
i + y2

i /t i ]) dµ(t1, . . . , td)

is a solution, whenµ is a Þnite measure on(R(
+ )d.

Theorem 5.4.2 . Ð Let f ' S!(R2d). Then f satisÞes(5.27) if and only if there exist
polynomials Pk , k = 1 , . . . , N , Þnite measuresµk on (R(

+ )d, such that

f (x, y) =
'

k

Pk (x, y, ' x , ' y )H µ k (x, y).

Sketch of the proof. Ð Let F be the Bargmann transform of f , and

G(z, . ) = F
=

z + .
(

2
,

z $ .
(

2

>
.

We can show as in the proof of Theorem5.1.6 that

|G(z, . )| % C(1 + |z| + |. |)N exp("
'

i

| Re(zi )|| Re(. i )| + | Im(zi )|| Im(. i )|.)

We conclude with Paley-Wiener-SchwartzÕs Theorem.

We can as well prove the following generalization of Theorem5.1.8. Let - be a
smooth function, equal to 0 in a neighborhood of the origin, and to1 in the comple-
ment of some compact set. We consider the distributionsf ' S!(Rd) such that

(5.28)

2
- (|x||y|)f (x, y) exp(2" |x||y|) ' S!(Rd),

- (|! ||$|) !f (!, $ ) exp(2" |! ||$|) ' S!(Rd).

Again, we use a cuto" function because the norm is not smooth at the origin. Examples
are distributions satisfying

f (x, y) = O
$

exp($ 2" |x||y|)
%
,

!f (!, $ ) = O
$

exp($ 2" |! ||$|)
%
.

It is not necessary for x and y to have the same number of components. We choose
(x, y) ' Rd, with x ' Rk and y ' Rl , k + l = d.

Theorem 5.4.3 . Ð Let f ' S!(Rd). Then f satisÞes(5.28) if and only if there exist
polynomials Pk , Þnite measuresµk on R(

+ , such that for all x, y,

f (x, y) =
'

k

Pk (x, y, ' x , ' y )
"

R#
+

exp($ "t |x|2 $ " |y|2/t ) dµk (t).

Sketch of the proof. Ð Let F be the Bargmann transform of f . Then it can be shown,
as whend = 1 , that there exist C, N > 0 such that for all z, . ,

|F (z, . )| % C(1 + |z| + |. |)N exp(" | Re(z2 $ . 2)|).

This is done as in the proof of Lemma5.1.1. We conclude with Paley-Wiener-
SchwartzÕs Theorem.
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