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UNCERTAINTY PRINCIPLES ASSOCIATED TO
NON-DEGENERATE QUADRATIC FORMS

Bruno Demange

Abstract. B This volume is devoted to several generalisations of the classical Hardy
uncertainty principle on Euclidian spaces. Instead of comparing functions and their

Fourier transforms a Gaussian, we compare them to the exponential of general non-
degenerate quadratic forms, like for example the Lorentz form. Using the Bargmann
transform, we translate the problem into the description of several classes of analytic
functions of several variables, and at the same time simplify and unify proofs of results
presented in several previous papers.

RZsumZPrincipes dOincertitude associZs ~ des formes quadratiques non dZgZnZrZes)

Ce volume est consacrZ a des gZneralisations du principe dQincertitude classique de
Hardy dans les espaces Euclidiens. Au lieu de comparer les fonctions ~ des gaussi-
ennes, nous les comparons a IOexponentielle de formes quadratiques non dZgZnZrZes,
par exemple "~ la forme de Lorentz. Nous transformons ces problemes " 1Qaide de la
transformZe de Bargmann, en des problsmes de description de certaines classes de
fonctions entieres de plusieurs variables. Ces mZthode amZliorent et simplibent des
rZsultats publiZs dans des travaux prZcZdents.
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INTRODUCTION

This volume concerns certain forms of the uncertainty principle in harmonic anal-
ysis. The uncertainty principle is a general term for theorems that show that if a
function f on RY and its Fourier transform f! approximate g and g, then they must
be equal.

The history of the uncertainty principle goes back to Heisenberg inequality of
guantum mechanics, namely

" @

XPIF OO dx ™ PR ()P dr ! 162

#f#321

where d is the dimension, andf (y) = #f (x) exp($ 2i"xy ) dx. This inequality is well
known as the fact that the product of uncertainties of the position and the momentum
is bounded below by an explicit constant, that involves the Planck constant. Equality
occurs only for the Gaussian functionsf (x) = C exp($ t|x|?), t> 0.

The Hardy uncertainty principle [ 13] precised this unique property of Gaussian
functions: if # is a Gaussian function, there is no functionf such that |f | % # and
'] % #, except for the function # itself (or its multiples). Variants of this results were
proved by Morgan [22], Cowling-Price [10], not to mention the work that has been
done on Lie Groups. Thi':s was illustrated more recently by a lost result of Beurling 16]:

. If COIIF () exp(2" [xy]) dxdy < &

implies that f = 0, while Gaussian functions make this integral pPnite when2" is
replaced by a smaller constant. This has been completed irv], and one actually has,
as a corollary, the following version of Hardy uncertainty principle: if

If 0O ()] % exp($ 2" [xy[)

then f is a Gaussian function. In this example, we see that we can ask functions to
decrease exponentially in some directions, and not in other, and still get an uncertainty
principle.

This paper is essentially about the study of functions satisfying estimates of the
form

(0.1) If ()1 % exp@ ™ [ax)D), IF ()] % exp@ " 1 ()I),

SOCIfTf MATHfMATIQUE DE FRANCE 2009



8 INTRODUCTION

where g and d are two quadratic forms. We ask for an exponential decrease in some
directions, but not in regions close to the isotropic sets of the forms, where they
vanish. The classical Hardy uncertainty principle corresponds to positive quadratic
forms. Take for example as previously the case of quadratic forms oR? debned by
ax,y)=2xy and ¢ (!,$) = 2!$. We ask for

(0.2) If (x,y)] %exp(® 2" xyl), If (1, $)] % exp($ 2" |!$]).
Here g and g are not positive, and we cannot expect solutions to be integrable. Take
for example
f(x,y) = sgn(x)exp($ 2" [xy]).
It is not in any LP space exceptL” . However, in the distribution sense, we have

£(1,%) = $isgn!)exp($2"|'$)),
so that (0.2) is satisbed.

We see with this example that studying solutions of Q.1) requires to work on the
level of distribution. In this setting, ( 0.1) can be rewritten in the following: study
distributions f in the Schwartz spaceS' so that

(0.3) f(dexp(x"a(d) ' S, f(@exp(x"q'(d) " S'.

When g and ¢ are both positive quadratic forms, this corresponds to the classical
Hardy uncertainty principle, except that it is stated in a distributional setting. In the
simplest case, the conditions are

(0.4) f(gexp("|af)' S', f(dexp("|af)" S

To solve this problem, we had to work with more regular objects than distributions.
We do this using the Bargmann transform, which is essentially a convolution with
a Gaussian function. Iff is a tempered distribution, its Bargmann transform is the
entire function debned by

%
B(f)(z) = exp Ez2 f % #z),
where #(x) = exp($" |x|?). It has been introduced by Bargmann in B, 4].
We already used the Bargmann transform in ], even if not explicitly. There we
studied functions satisfying Beurling type conditions, of the form
(0.5) (L+ X+ [yD*NFOOf (y) exp Ixy]) L™

Even if it was the scheme of HdrmanderOs proof for Beurling theorem, regularity éf
is not a direct consequence of @.5), while HardyOs conditions imply directly that f
extends to an entire function of order2. Our trick was to convolve f with #. Sincef
has to be a Hermite function, so doegy = f % # We showed that the new function g
satisbes also@.5). This is the Bargmann transform of f, up to a factor.

MfMOIRES DE LA SMF 119



INTRODUCTION 9

We go back to (0.4). We show in the brst chapter that f is necessarily a Hermite
function, namely f (x) = P (x) exp($" |x|?), whereP is a polynomial. Equivalently, we
prove that the Bargmann transform of f is a polynomial. This is done in two stages.
First we show that (0.4) is equivalent to an estimate on the Bargmann transform of
f . Then we conclude using a version of Phragmen-LindelSf principle. This is a scheme
for all our proofs. This distributional version of Hardy uncertainty principle allows
to recover known variants, including the result of Cowling-Price [LO]. We exploit the
Bargmann transform to have a distributional version of other uncertainty principles,
including the one of Morgan, Beurling (generalizing the results of 7]), as well as
directional uncertainty principle, mainly in one dimension, where conditions are stated
only on the positive numbers axis for example. Let us mention, in this context, a
characterization of Bargmann transforms of distributions which are tempered on one
side.

When q(x) = a|x|?,q(!) = b|!|?, with ab > 1 it follows that there are no solution
for ab > 1, there are only Gaussian or Hermite solutions wherab= 1. The case when
ab < 1 had partially been studied before (see for examplell7]). We give here the
structure of the distributions satisfying

f(dexp("alaf)' S, f(dexp("blaf)’ S', ab<1,

which are actually the members of a space of Gelfand and Shilov. Many Gaussian
functions satisfy these estimates, including complex Gaussian functions, and it is
easy to characterize them. We show that any other distribution with this property is
an average of such Gaussian functions.

This is actually a phenomenon that will happen through the whole paper when
considering other pairs of quadratic forms. We will study in general the spaceé(q, d)
of tempered distributions f satisfying (0.3), given two quadratic forms, that we assume
to be non degenerated. As for the case of positive forms, three cases will occur.
When there are no Gaussian elements, we call the paiig, d) a super-critical pair. We
expect then G(q,d) to be small in some sense. We give sulcient conditions so that
G(qg,d) = {0}, and so that it does not contain certain classes of integrable functions.
When there are non-real Gaussian elements, we call the pair sub-critical, and critical
in the other cases. We give precise characterizations of those pairs in terms of the
spectral properties of the matrices of the two quadratic forms.

The case that will be of most interest to us is the critical case. The Gaussian
elements of G(q,d) are then all real, and parameterized by a Group of matrices
naturally associated to the quadratic forms. This leads to a natural conjecture on
the structure of the elements ofG(q, d): are all 0" them generated by the Gaussian
functions, using averages as above? This conjecture seems even more natural when
we have translated the problem on the level of entire functions, using the Bargmann
transform. Such a result is established when one of the forms is positive, this is actually
deduced from the one dimensional case of Hardy uncertainty principle. However when
the two forms have a signature, this is not so simple, and we will not be able to
conclude in general. The issue is that they may not be diagonalized in the same basis.

SOCIfTf MATHfMATIQUE DE FRANCE 2009



10 INTRODUCTION

In extreme cases, not only they may not be diagonalized simultaneously, but the group
that parametrizes the Gaussian functions contains only one element. This is the case
for example wheng(x) = x? $ x3 and ¢(!) = 2!1!, on R?. Then the conjecture is
that any distribution f such that

f(x)exp(x" (x3$ x3) " S, (1) exp(x2'11,)" S
is a Hermite function f (x) = P(x)exp($" |x|?). We could not conclude up to now.
If we take q(x,y) = 2xy and ¢'(!,$) = 2!$ on R?, the spaceG(q,d) contains the
functions satisfying (0.2). The Gaussian functions in this case are
$ n 0,
Hx,y)=exp $"tx2$ sz

%o

We show that any element of G(qg,d) can be built up using the #. For the example
above we have "

’ d
IO XpS2 Py = x Al y) G

Now take the distribution f (x,y) = 1(x)) &), where &is the Dirac mass. It is an
element of G(q, d), sincef (1,$) = &!)1($). It is actually the limiting case of # as
t* 0. If &, is the Fourier transform with respect to the second variable, we have

Fof (x,y) =1 =exp($" (x* + y2)) + " (x* + y?) l exp($ "t (x* + y?)) dt
0

hence we can express in terms of the #:

1 o " 1 t
f(x,y)= th(xy)+ "x2 i #(X,Y) Ydt:i.s 3 . #t(x,y)Z(dTT.

We prove more generally that any element ofG(q,d) can be decomposed in the
following way:

(0.6) fOay)= Py, x.'y)  #(KY) du(t),

k
where the sum is Pnite, Py are polynomials in x,y and in the partial differential
operators ' x,'y, and p are Pnite measures or0, & [. Since we take derivatives,
(0.6) is a distribution in general. However we show that it is regular away from the
coordinate axis. Indeed,f (x,y) dePned by Q.6) is a real analytic function away from
the axis, and satispes an estimate of the form

If (%, y) % Cy (1 + [x| + [yD™ exp($ 2" xy])

whenever |xy| > (> 0, as well as its Fourier transform. As shown by the example
above, there are non zero solutions that vanish foxy = 0. They are exactly linear
combinations of distributions of the form

&9(x)) vy, orx*) &(y).

Our main results come when considering the analogue of the quadratic forniaxy or
x2$ y2 in higher dimensions. The Lorentz form is debned byy(x,y) = X2+ &446€x3$ y?,
x' R4, y' R.We are able to prove the same structure property as in Q.6) for the
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INTRODUCTION 11

elements ofG(q, g), except that the integrals are over the Lorentz group of matrices.
The solutions have the property that they are real analytic inside the Lorentz cone,
while they can be singular outside. We prove that no element of5(q, 9 is supported
in the set{q =0}, unlike in dimension 1. However we exhibit distributions that vanish
inside the cone, as well as their Fourier transforms, without vanishing completely. We
prove similar results when considering pairgq, d) whereqis the Lorentz form and q
is any form of the type ¢'(!,$) = a1!? + aaé aq'3 + a$?, with a,a=0.

We do realize that this volume asks more questions than it solves. We organize
it as follows. We begin with an history of uncertainty principles of Hardy type, and
their di"erent generalizations. We show how the use of the Bargmann transform sig-
nibcantly simpliPes their proofs and unibes the results. We mainly focus on results of
Hardy, Morgan, Beurling. In the second chapter we go further in details to get richer
results, including the aforementioned Hardy uncertainty principle in the sub-critical
case. We prove various uncertainty principles where any function or distribution satis-
fying the conditions is an average of Gaussian functions satisfying the same estimates.
In the next chapter we start the study of Hardy uncertainty principle when considering
non positive forms. This leads to a classibcation into critical, sub- and super-critical
pairs. The critical pairs will be studied in more details in the fourth chapter. We state
there the main conjectures on the structure of the space§(q, d), and the equivalent
problems that arise on the level of entire functions. We then prove the main result
when we have a Lorentz quadratic form, and variants.

SOCIfTf MATHfMATIQUE DE FRANCE 2009






CHAPTER 1

HARDYOS UNCERTAINTY PRINCIPLE
AND ITS GENERALIZATIONS

1.1. HardyOs uncertainty principle

Throughout this text we will use the following terminology.

Definition 1.1.1 . B Let A be a real symmetric matrix. It is positive if
JAX,X-> 0
wheneverx = 0. It is semi-positive if ,Ax,x-! 0 for all x.

A symmetric matrix A is positive if and only if its eigenvalues are positive. It
is semi-positive if and only if its eigenvalues are non-negative. We denote bl the
identity matrix.

Definition 1.1.2 . B A Gaussian function is a function of the form
f(x)=exp($",AX,x-),

WhereA( is a poyitive symmetric matrix. The Fourier transform of f is det(A)# 1?2
exp($" A#1x,x”). A Hermite function is a function of the form

f(x)= P(x)exp($",Ax, x-),
where P is a polynomial. The Fourier transform of f has the form
Q(x) exp($" (A# X, x)),

where Q is a polynomial of the same degree aB.
The standard Gaussian function is
#(x) = exp($" [x]?).

We have # = #.
HardyOs uncertainty principle is the following, seelf].

SOCIfTf MATHfMATIQUE DE FRANCE 2009



14 CHAPTER 1. HARDY’S UNCERTAINTY PRINCIPLE AND ITS GENERALIZATIONS

Theorem 1.1.3 . P Let A,B be two positive matrices, andN ' R. Let f ' L?(RY)
such that, for almost allx,! ' RY,

(1.1) If ()] % C(L+ |x)N exp($",Ax,x-),
(1.2) FM%c@+ N exp$",B!,! -).
If A$ B*! has a positive eigenvalue, theri = 0. If A = B#1, then there exists a
polynomial P, of degree at mostN, such that
f(x)= P(x)exp($",Ax,x-).
When f = 0 is the only possible conclusion, we will speak ofhe weak HardyOs

uncertainty principle, and of strong HardyOs uncertainty principlevhen A = B#1 and
N1 O

Many generalizations of Theorem1.1.3 in di"erent directions have been given.
In [10], the following result is obtained:

Theorem 1.1.4 . D let a,b > O with ab! 1, andf ' S'(R). Let 1 % p,q % &.
Assume that

f(dexp("alaf) ' LP(R), f(gexp("blaf) " L.
Thenf =0 unlessp=q= & andab=1.

The condition is optimal since the Gaussian functionf (x) = exp($ "ax ?) is a solu-
tion for ab=1 andp= gq= & . The corresponding statement forR? was Prst obtained
in [7]. Functions satisfying close conditions are proved to be Hermite functions:
Theorem 1.1.5 . DLet N ' Randf ' L2?(RY). Assume that

@+ XD*NFOgexp( X% LHRY), @+ [N exp( [P LYRY).
Then f (x) = P(x)exp($" |x|?), where P is a polynomial of degree less thamN $ d.

Theorem1.1.4is a consequence of Theorerh.1.5 We have stated Theoreml.1.5for

the standard Gaussian functionexp($" [x|?). The general formulation, with matrices

A and B as in HardyOs uncertainty principle, can be done in the same way (see
Theorem 1.3.5).

Morgan gave in 2] the following version of the uncertainty principle, where the
Gaussian functions have been replaced by a more general family.

Theorem 1.1.6 . BLet 1 < p < 2, q be the conjugate exponent, and,b > 0. Let
f ' L2(R) such that for almost allx,! ' R,

If (x)] % C exp($ 2'p* *aP|x|P), |F ()] % C exp($ 2'q* 1b|! |9).

If ab > |cos@-)|P, thenf =0.
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1.2. THE BARGMANN TRANSFORM 15

This is an intermediate result between Paley-Wiener-SchwartzOs Theorem, corre-
sponding to p = 1, and HardyOs uncertainty principle. Morgan gives a family of
solutions whenab = |cos(%)|1’p . The characterization of all possible solutions may
be di'cult, since he shows the following: given anyN ' R and ab= |cos(%)|1’p , one
can bnd a nonzerd ' L?(R) and M ' R such that

If ()1 % (L+ XDV exp(s 2'p* *a[xIP), If (1)] % (L + ') exp($ 2'q* B! |)

Unlike Theorem 1.1.3 N may take negative values. Another version of Theoren1.1.6
has been given in T]:

Theorem 1.1.7 . B Let 1 < p < 2, q be the conjugate exponent, and, b > 0. Let
f ' L?(R) such that

If (x)]exp2'p*taP|x|P)dx < &, |f(!)|exp@'q* A1) d < &.
R R
If ab > |cos@-)|*P, thenf =0.

The proofs of Theorems1.1.3 1.1.4, 1.1.6 and 1.1.7 are very similar and rely on
Phragmen-Lindel3f principle, which can be stated as follows.

Lemma 1.1.8 (Phragmen-Lindelsf) . D Let ) ! 1. Let F be an analytic function of
order ) in a domain delimited by two lines forming an angle less thari. Assume that
F is continuous on the closure of the domain, and has polynomial growth of ordex
on each line of the boundary. Then it has polynomial growth of ordeN in the whole
domain.

See 4] for details. One can sketch the original proofs of HardyOs and MorganQOs
uncertainty principles as follows: brst observe that the conditions given onf and f
enable us to extend them to entire functions. Then one tries to apply Lemmal.1.8 or
its numerous variants (see 18, 27]) to f. The proof of Theorem 1.1.5is slightly dif-
ferent, since we apply Phragmen-LindelSf principle to an auxiliary function, obtained
by convolution of f with a Gaussian function.

In the next section we will introduce the Bargmann transform, a tool that will be
used throughout this paper. We will show that it can be used to unify these proofs
and give further generalizations of Theoremsl.1.5and 1.1.7.

1.2. The Bargmann transform

As mentioned before, the auxiliary function used in the proof of Theorem1.1.5is
a convolution of f by a Gaussian function. This is almost the classical tool known as
the Bargmann transform of f . We still denote by # the standard Gaussian function
#(x) = exp($" |x]?).

SOCIfTf MATHfMATIQUE DE FRANCE 2009



16 CHAPTER 1. HARDY’S UNCERTAINTY PRINCIPLE AND ITS GENERALIZATIONS

Definition 1.2.1 . B The Bargmann transform of a tempered distributionf * S'(RY)
is debned, forz' CY, by

(1.3) B(f)(2) = exp 222

%
f % #z).

Here,z? = zZ + 444 z3.

We denote by, - the duality bracket between the Schwartz spaceS(R?) and the
tempered distributions S'(RY). Many properties of 4 are shown in B, 4]. For example
it is injective. More generally we have the following Lemma, that will be useful later
on;

Lemma 1.2.2. BDlett> Oandf ' S'(RY). Assume that for all polynomial P we
have

(1.4) (f, P (3 exp($t| af)) =0.

Thenf =0.

Proof. B After a change of variables we may assume that = ". Relation (1.4) is
equivalent to B(f) = 0. Hencef % #=0, or f# =0, and consequentlyf =0. O

The Bargmann transform was initially used as an isomorphism fromS'(RY) into
the Fock SpaceF , that is debned as follows.

Definition 1.2.3 . D The Fock spaceF is the space of entire functionsF on CY,
such that there existsC and N > 0, such that for all z' C9,

s %
(1.5) F@I%CA+ |2)" exp 2 0

Definition 1.2.4 . B The spaceF o is the space of entire functionsF on CY, such

that for all N > 0, there existsCy, such that for all z' CY,
" %

#N $ 2
(1.6) IF(2)]%Cn (1+ |z)" " exp 52|

Consider the topology onF o given by the semi-norms
$ %
Qn (F) = sup IF@)IQ+ z)" exp $ EIZI2 :

Then the dual space ofF ¢ can be identibed with F : any continuous linear form on
F o can be written as

F$ F(2)G(z) exp($" [z|*) dV(2),

cd
for a uniquely determined G' F . Here dV(z) is a renormalization of the Lebesgue
measure onCY. Recall that the topology of S(RY) is dePned by the semi-norms

(1.7) Pn(*)=  sup  (1+ x| #*(x).
|#]$ N,x %Rd

Proposition 1.2.5 . B The Bargmann transform is a homeomorphism from the space
S'(RY) into F , and from S(RY) into F .
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1.3. HARDY’S THEOREM ON S' 17

The inverse Bargmann transform is given by the following identity, which is the
fundamental isometry relation for the Bargmann transform:

Proposition 1.2.6 . B letf ' S'(RY), and* ' S(RY). Then

(1.8) (f* ) - y B(f)(2) B(*)(2) exp($ " |2I?) AV (2).

Another useful property is the following analogue of ParsevalOs Identity.

Proposition 1.2.7 . B Letf ' S'(RY). Forall z' CY we have
(1.9) B(f)(2) = B(f)(iz).

1.3. HardyOs Theorem on S'

1.3.1. Dimension one. B A simple computation shows that the Bargmann trans-
form maps the space of Hermite functions of the formP (x) exp($ "x 2) into the space
of polynomials. Thus Theorem1.1.5 amounts to showing that the Bargmann trans-
form of such a function is a polynomial. We can prove a more general version of
Theorem 1.1.5

Theorem 1.3.1 . D letf ' S'(R). Then
(1.10) f(dexp(" (39" S'(R), f(§exp(" (3% ' S'(R)

if and only if there exists a polynomial P such that for all x ' R, f(x) =
P (x) exp($ "x ?).

Proof of Theorem 1.3.1. B Let F be the Bargmann transform off . Sincef (§ exp(" |4
[2) ' S'(RY), there existsN such that for all * ' S(R),

W v A2 )i
f exp("(99),* (8" % CPy (*).
If we write F (z) as the action of the distribution f (§ exp(" (§2) on the test function

$ N7
*,(x)=exp $2'x%+2"xz $ E22 ;

we obtain
|F(2)] % CPn (*2)

$ : %
%C sup(l+ x|+ |z)™N exp $ 2" |x|>+2" |x|| Re(z)| $ E%e(zz) .
X %R

2N $ 2 ) 2%
%Csup(l+r+|z)N exp $2'(r$ Re(z)/2)° + E|j/n(z)| ,

>0

and thus
2N $" 2%
(1.11) IF(2)]% C@+ |z])°" exp El Im(2)|° .
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18 CHAPTER 1. HARDY’S UNCERTAINTY PRINCIPLE AND ITS GENERALIZATIONS

If we use now the hypothesis orf and Formula (1.9), we obtain
$" %
(1.12) IF(2)| % C(1+ |z))* exp EI%(Z)I2 ’

for some positive integerM . We conclude that F is a polynomial using the following
lemma and LiouvilleOs Theorem. O

Lemma 1.3.2. D Let F be a continuous function on! = {z; %e(z) ! 0, Jn(z)! 0},
holomorphic in the interior. Assume that there existC,N > O such thatforallz' !,

N $ ,%
IF(2)|%C@+ |z))" exp | 4n(2)]° .
Assume moreover that|F (ix)| % C(1 + [x|)N for x ! 0. Then
IF(@)|%C+ |z)"
forall z' !.
. . $, L% .

Proof. B Consider, for ( > 0, the function F,(z) = exp '5(22 F (z). By assumption,
it has a polynomial growth of order N on iR* and on the half-line {(x,y) ' RZ;x =

(* 1y}, with constants independent of (. Lemma 1.1.8 implies that this estimate is
true between the lines, and thus|F (z)| % C(1 + |z])N in ! . O

Theorem 1.3.1 corresponds to the critical case of Theoremi.1.3 The super critical
case is a corollary:

Theorem 1.3.3 . D letf ' S'(R). Let a,b' R. Let G(a,b) be the space of tempered
distributions f such that

(1.13) f(gexp('a(d?) ' S'(R), f(3exp("b(d?) ' S'(R).
If ab > 1then G(a,b) = {0}. If ab=1 then any element ofG(a, b) can be written as
P (x) exp($ "ax ?) for some polynomialP.

1.3.2. Higher dimensions. B We will now give a distributional version of The-
orem 1.1.3in any dimension. For that purpose we need the following result which
proves that a too fast Gaussian decay on one direction dR? is impossible, except for
the zero distribution.

Theorem 1.3.4 . Dleta> 1andf ' S'(RY). Assume that

(1.14) f(x)exp("x2) " S'(RY), f()exp(@" 2)' S'(RY).

Thenf =0.

Proof. B Let + ' S(R¥1). Consider the distribution Tg ' S'(R) debned by
Tg, == %) +-,

where (* ) +)(X) = *(X1)+(X2,...,Xq). Then (1.14) implies that Tg(§exp("|aFp)"
S'(R) and T3 (g exp(a"|ap) ' S'(R). Theorem 1.3.3implies that Tg = 0. This is true
for all +' S(R%1), and we conclude thatf = 0. O
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Theorem 1.3.5 . b Let A,B be two symmetric matrices, withA positive and B in-
vertible. Let f ' S'(RY) such that

(1.15) f(gexp(",Ad8)" S'(RY), f(dexp(x",B4a)" S'(RY).
If AB has an eigenvalug such that|, | > 1, thenf = 0. If all its eigenvalues arel
or $1, then
f(x)= P(x)exp($",AX,x-),
where P is a polynomial.

Herel is the identity matrix.

Proof. B Note that AB is conjugated to the symmetric matrix AY 2BA Y2, and hence
it is diagonalizable. Let Q' O, (R) such that 'tQAY?2BA Y 2Q is diagonal, with diag-
onal coelcients by,...,b,. Put P = A#*¥2Q, and g(x) = f (Px).

We are lead to characterizeg such that

(L.16) g@exp("|af) " S'(RY), o) exp(x" (! f+ & by!d)) " S'(RY),
whereh ' R\{ 0} are the eigenvalues ofAB .

Assume that max; |[b| > 1. Suppose for simplicity that |b;| > 1. Let + be a bxed
and compactly supported function on R% 1. Let Tg be the element ofS'(R) debned
by )

1T$ [} *o = gy * ) -L .
Its Fourier transform is debPned by
Ts,* =.0.%) +-

We brst use the fact that g(x) exp("x 2) ' S'(RY), and we obtain
(1.17) Ts(3exp("|4f) " S'(R).
Next we use the inequality |b! ? + &+ by'3|! | bi|'2$| "~ ., ;h!?|, and the fact that
+ is compactly supported. We obtain
(1.18) Ts@exp(" |bul']) " S'(R).
Since|by| > 1, Theorem 1.3.4implies that Tg = 0. Since + is arbitrary, we conclude
that g=0.
Assume now that |b| = 1 for all i. Equations (1.17), (1.18), and Theorem 1.3.1
imply that
Ts (x1) = Pg(x1) exp($"x3),
where P is a polynomial. The degree ofP depends only on the orders ofy and §, not
on the choice of+. Hence one can write
"N

gx)=  x5exp@"x2)) %(X2,...,Xq),
k=0

SOCIfTf MATHfMATIQUE DE FRANCE 2009



20 CHAPTER 1. HARDY’S UNCERTAINTY PRINCIPLE AND ITS GENERALIZATIONS

where the gy are tempered distributions, and N depends only on the orders ofj and
f. Now (1.16) implies that for all k,

f(X2,...,xq)exp(" (x5 + 444 x3)) ' S'(R¥?Y),
f(la,...,lq)exp(x" (b!3 + 444 y!3)) ' S'(R¥Y).
The result follows by induction. O

Remark 1.3.6 . D Theorems 1.1.3 1.1.4 and 1.1.5 are direct corollaries of Theo-
rem 1.3.5 Our proof simplibes all their classical proofs.

1.4. MorganQOs uncertainty principle on S'(R)

In order to sate MorganOs Theorem in the distribution setting, we need cuto”
functions. Throughout this paper, the letter - will denote a smooth function on R,
vanishing in a neighborhood of the origin, and equal tol outside a compact set.
Similarly, the letter -, will denote a a smooth function equal to1 in a neighborhood
of +& , and vanishing on]$& , 1].

Theorem 1.4.1 . Blet 1 < p < 2, q be the conjugate exponent, ané,b > 0. Let
f ' S'(R). Assume that

(1.19)  f(3-(@exp(2'p**aP|aP)’ S'(R), (8- (Jexp(2'a” B af)" S'(R),

and that ab > | cos(%-)|¥? . Then f =0.

Note that condition (1.19 is independent of the particular choice of-. We have
to formulate the hypotheses in this way, since the functions| 4P and | a f are not
smooth on R. Recall that the constant |cos(%)|1’p is optimal as shown by MorganOs
examples in p2].

Proof of Theorem 1.4.1. B We consider the functionF (z) = f % #(z) rather than the
Bargmann transform itself. We have, by Proposition 1.2.7,

F(2)= f+, ,

with +,(!) = exp($"! 2 + 2i"lz ). We argue then as in the proof of Theorem1.3.1,
and estimate the semi-norms of the test functions involved.

Take the cut-0" function - such that - (r) =1 for |r| > 2, and- (r) =0 for |r| < 1.
First use the fact that f ' S'(R), so that there existsn, such that
*

Y008 )t S%CPL(AS -)+y)

1.20
(1.20) %C sup (L+r+ |z])® exp($3"r 2+2"r | 9n(2))).
O<r< 2
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Now we use the fact thatf (3- (§exp(2'q” 17| &) ' S'(R). One can thus bnd some
m > 0, such that
* - : $ %
*0%CPy -+, exp($2'g” 1| af)
%Csup(l+r+ |z])>™ exp($"r2+2"r | In(z)|$ 2'q” 1br9).

> 1

Vi
(1.21)

Combining (1.20) and (1.21), we bnally bnd that there exist C,N > 0 such that
|F(2)| % Csup(l+r+ |z)N exp($"r2+2"r | In(z)|$ 2'q” 1br9).
r> 0

Then we use the identity r| #n(z)| % p* 1b* P| 4n(2)|P + o 1fr9, and obtain
(1.22) IF(z)| % C(1+ |z)N exp(2'p”* 10" P| In(2)IP).

We will show that for ( small enough, and! ' R,

(1.23) IF(1)I%C(()exp($2'p* (as$ ()°I! 7).

We will choose ( so that (a$ ()b > |cos(%)|1’p. Then, by a standard argument
already used in [7, 22, 23], it will follow from ( 1.22) and (1.23) that F =0.

So we now prove Inequality (L.23). We argue as in the proof of Inequality 1.22
Writing F(!) as the action off on the test function x * #(x $ !), we can prove as
well that

[F(1)%Csupl+r+ [N exp@$" (r$|!)?$ 2'p*aPrP).
r> 0

In order to estimate the right hand side, we use the following identity: whenever
O0<s<t and$ > 0, there exists a constantC(a, $) depending only ona and $, such
that

20" 1aP(tP $ sP) % C(a,$) + (1 $ )% + $°.
Indeed, the left hand side is bounded by2aP(t $ s)tP* 1 % (t $ s)? + a?Pt?P# 2, which
allows to conclude fors >t/ 2 (remember that p < 2); otherwise, we write 2p* *aPtP %
C(a)+ 3t2%C(a)+(t$ s)%
Hence, forr % ||,
@Q+r+ )N exp@"(r$11)*$ 2'p*taPrP)
%C(a, )1+ ['D" exp@2'p*t(@s$ (OP'|P).
Forr '] !], we write
@+r+ 1PN exp@"(r$|1n?s$ 2'p*laPrP)
%L+ r+ 1N exp$” (r $]!))?) exp($2'p”tal|!°)
%C(L+ [!)" exp($2'p* 1aP|!|P),
and (1.23 follows. This proves that F =0, and hencef =0. O
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1.5. Beurling®s uncertainty principle

A particularly elegant generalization of Theorem 1.1.3has been given by Beurling.
The proof was brst forgotten, and then HSrmander published one in13]. The original
statement is the following:

Theorem 1.5.1 . B letf ' L?(R). Then
(1.24) - If (OF (y)| exp(2' [xy]) dxy < &
if and only if f =0.

This implies HardyOs uncertainty principle (onR, when A = B#1 and N < $1).
in [7], we obtained a complete analogue of BeurlingOs Theorem, with a characterization
of Hermite functions, in any dimension. We found then a bilinear version of this result
in [11], which can be stated as follows.
Theorem 1.5.2 . P Letf,g ' L?(RY), and N ' R. Assume that

If QB+ IF (I9(X)
1.25
(129 S e Rl
Then eitherf =0, or g=0, or f and g are Hermite functions,
f(x)= P(x)exp($",Ax, x-), g(x) = Q(x)exp($",Ax,Xx-),

where A is a positive matrix and P, Q are polynomials such thatdeg(P) + deg Q) <
N $ d.

eXp(Z" |1X1y_|) de < & "

Here we encountered a dilculty: the quadratic form in the exponential is not
positive or negative debnite. Henceéf and f are not automatically entire functions,
so we cannot apply a Phragmen-LindelSf principle to f or f. Let us remark that in
dimension 1, HSrmander could do it in [13], using a specibcity of Formula (.24), and
a tedious version of Phragmen-LindelSf principle.

We could overcome this dilculty in [ 7] by considering a convolution off with a
Gaussian function, instead off itself. This is a natural choice since this new function
has still to be a Hermite function. We showed that it also satisbes 1.25. It seems
that this is the prst use of the Bargmann transform in uncertainty principles.

Here we will show that the Bargmann transform can be used to get a generalization
of Theorem 1.5.2to the setting of distributions. The conditions are given on the tensor
products f ) gandg) f:

Theorem 1.5.3 . B Let f,g ' S'(RY). Assume that
(1.26) f) bexp2',x,y-)' S'(R™), ) gexp#2',x,y-)' S'(R¥).

Then either f =0, g =0, or there exists an orthogonal decomposition oRY, that is
RY=E'. E", such that the distributionsf and g may be written as

(1.27) f(x)= P(x'," yn)exp($",Ax', x"-), g(x) = Q(x'," yr)exp($",Ax', x'-),
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whereA is a real semi-positive symmetric matrix andP and Q are polynomials. Here
x' and x" are the orthogonal projections ofx on E' and E".

Proof. B Let us emphasize that now, in a distribution context, degenerate matrices
A are allowed, as well as derivatives of Dirac masses. We may assume thiat= 0

and g = 0. Denote by F and G the Bargmann transforms of f and g. We can write

F(z1)G($izy) as

(f (X)) B(y),exp($” (x$ z1)*$ "(y $ Zz)))

We will show as in [7, 11] that F (z)G($iz) is a polynomial. We use the same trick as in
the proofs of Theoremsl.3.1and 1.4.1, writing ( 1.28) as the action of the distribution
f(x)) g(y)exp(2'|,x,y-|) against some test function. One actually distinguishes the
cases|,x,y-| % 1 and |,x,y-| ! 1to avoid di"erentiability issues. Let z;,z, ' C. We
Pnd

IF(z1)G($iz2)| % C sup (1+ |x|+ |y + |za] + |zo])"
X,y %Rd

" expgls "X+ ly12+2],%,y4])
"exp 2',X, Re(z1)- +2" .y, Re(z5)- $ 5 Re(z3 + Zz)

128) ez + )

Put R? = |x|? + |y|? +2]|,x,y-| = max(|x + y|?,|x $ y|?). Then
(1.29)
[F(z1)G($iz,)| % C sup(l + R+ |z1] + |z2))N exp($ "R ?)
"o R (| Reler + 22)| + | Reler B 2) S 5 RelZE 4 2D)
%C(1+ |21| + |zz)
" exp *| Re(21$ 25)|| Rez1 + 25)| + *|fm(z1,22)|

Using the hypothesis onf ) g, we can prove as well that
IF(21)G($iz2)| % C(L+ |z1] + |za])"

1.30 $" "
(1.30) " exp |jm(21 + 2)|| In(z21 $ 22)| + *| %@(21,22”2

Next, apply Lemma 1.3.2to the function F(z)G($iz). We have
IF(2)G($iz)| % C(L+ [z) exp(" min(| Re(2)[?,| #n(2)[?)),

and henceF (z)G($iz) is a polynomial in z.
We conclude as is T, 11], using a standard argument for entire functions of order
2, that F and G have the form

(1.31) F(z) = P(z)exp(E,Bz,z-), G(z) = Q(z)exp(E,Bz,z-),

where B is a symmetric complex matrix, and P, Q are polynomials.

SOCIfTf MATHfMATIQUE DE FRANCE 2009



24 CHAPTER 1. HARDY’S UNCERTAINTY PRINCIPLE AND ITS GENERALIZATIONS

It follows from homogeneity and (1.29 that for all z,. ' C¢,
1
| Re Bz, . -| % | Re(2)|| Re(. )| + é(lfm(Z)I2+ | g () ?).

Taking z real and . imaginary yields 4»(B) = 0. While if we take both real, we get
that | $ B | + B are semi-positive. PutE" = Ker(l + B) , E' = E"*, and let B"
be the restriction of B to E". The inverse Bargmann transform gives {.27), with
A=(1+B"* 11 $B"). O

As a corollary, one can give a more precise result than Theorerr.3.1, in view of
the degrees of the polynomials involved.
Theorem 1.5.4 . P Let f,g ' S'(RY), and N > 0. Assume that

f) gexpE2,xy-)" S'(R*)
and
@+ [x]+ yD* NG00t (V) exp(2' |, x,y-)) ' LY (R™).
Then eitherf =0, g=0, or f and g can be written as
f(x)= P(x)exp($" ,Ax,x-), g(x) = Q(x)exp($",Ax, x-),

where A is a real positive symmetric matrix, and P and Q are polynomials such that

degP)+ degQ) <N $ d. In particular f =0 or g=0 as soon asN %d.

The di"erence with Theorem 1.5.2 is that only one condition of integrability is
sulcient to characterize Hermite functions.

1.6. One-directional conditions

In this section we discuss other versions of Theorems.3.1, 1.4.1and 1.5.3 Either
the proofs can be done as in the previous section, or they are just corollaries of those
theorems.

We can state one-directional versions of HardyOs uncertainty principle.

Theorem 1.6.1 . D Let f ' S'(RY). Assume that
f (x)exp("x2) " S'(RY) and f(!)exp("! 2)" S'(RY).

Then there exists an integerN ! 0 and distributions fi ' S'(R% 1) such thatf may
be written as
'N
f(x)=  x5exp@"x%)) fr(Xz,...,Xa)-
k=0
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Proof. B We proceed as in the proof of Theoreml.3.4 Let + ' S'(R%1) and debne
the distribution Tg on S(R) by

JTg,¥-= f,% ) +-.

We have Tg(gexp("|af) ' S'(R) and Ts(dexp("|apf) ' S'(R). It follows from
Theorem 1.3.1that Ty is a Hermite function. Since the order of Tg depends only on
the order of f , this polynomial has a degreeN independent of+. Hence we can write
"N
T(x)=  x“exp($" [x|)ax(+).
k=0

We immediately see that the a, are tempered distributions of R% 1, and the result
follows. 0

In particular we have the following.

Corollary 1.6.2 . BLetf ' S'(RY). Assume that
f(x)exp("x?) " S'(RY), #(1)exp("t ?)* S'(RY,
foralli=1,...,d Then f (x) = P(x)exp($"|x|?) for some polynomialP.
We obtain an analogue for MorganOs Theorem:

Theorem 1.6.3 . Blet 1 < p < 2 and g be the conjugate exponent. Leq,b > 0.
Assume that

f(x)- (x1)exp2'p*taPx1[?) * S'(RY). £ (1)- (1) exp(2'q” 'H|!1|%) ' S'(RY).
If ab > |cos®-)|*P, thenf =0.
Remark 1.6.4 . B The conclusions of Theoremsl.6.1 and 1.6.3 are false if the con-
ditions given do not hold on the same coordinate for the function and the Fourier

transform. A counter-example is given the function +(x1)+(x,) on R2, where + is
compactly supported.

Nazarov gave in R3] an interesting analogue of Theoreml.1.6 which can be called
a one-sided uncertainty principle. It only asks for MorganOs conditions on one half-
line. We can generalize this to the setting of tempered distributions. Recall that- .
is a smooth function vanishing on]$& , 1] and equal to 1 on a neighborhood of+ & .

Theorem 1.6.5 . b Let 1< p < 2 and g be the conjugate exponent. Lea, b > 0 and
f ' S'(RY). Assume that

f (x)exp(2'p*1aP|x4|P)- + (x1) * S'(RY),
f() exp2'a® 1 x1|%-+ (1) S'(RY).
If ab> sin(%), thenf =0.

(1.32)
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Proof. B We can assume thatd = 1. We consider the entire functionF (z) = f % #z).
We have, by Proposition 1.2.7, F(z) = ’1’-,* 2, with *,(1) = exp($"! 2 +2i"1z ).
Write , - -

F(2)= 1*-, X$-4), + ﬁa_ +¥z .
We will show that for 4n(z) < 0,
(1.33) IF(2)| % C(L+ [zD" exp(2'p” *6*P| n(2)IP).

*7 *
Indeed, sincef ' S'(R), we can PndM such that * f,* *9%CPy (*) for all Schwartz
function *. Hence

*

X (18 -4)%, *%CPw (LS -)*)
%Csup(l+ |r|+ [z])®™ exp($3"r2$ 2'r In(z))
r$2

%C(L+ |z)* exp(d"| In(2)]).

This is smaller than (1.33 sincep > 1. As in the proof of Theorem 1.4.1, we have as
well * *
*1

- ro 9C(L+ [2))" exp@p” b Pl n(2)P).
We show now that for ! > 0,
(1.34) IF(MI%C(Oexp$2p*i(@s OPI1P),
for arbitrary small (. Let #{x) = exp($" (x $ !)?). In the same way, one can prove
that
Lf, (13 -+ )#e| % CL+ 1D exp($” (I'$ 2)%),

which is smaller than (1.34), sincep < 2. The estimate on,f,-# ¢ is done in the same
way as in the proof of Theorem1.4.1

Finally, we use Phragmen-LindelSf principle to show that the estimates (1.33) and
(1.34) imply that f = 0, as long as we choosé so that (a$ ()b > sin(%). Details
on this last point may be found in [23], but let us repeat brieBy the argument.
Choose(> 0and A > O such that (a$ ()b > A > sin("/p ). Consider the function
G(z) = F(zYP)exp(2'p* t* PAPZ). It is analytic for 4n(z) < 0 and continuous to the
boundary. Moreover, (1.33 and (1.34) imply that G(Re'®) is exponentially decreasing
for/ =0 and/ = $" +$, with $ > 0 small enough. By Lemmal.1.8 G is in particular
bounded for #7(z) % 0. But the exponential decay on the boundary implies that

log|G(X)| . _
Hence JensenOs condition is not satisPed, unl&s 0 (see B, 18]). O

Unlike the case of MorganOs Theorem, we do not know examples of solutions for
ab=sin("/p ). Nazarov gives in R3] an entire function f on C, for which there exist
constants &,) > 0, such that

If (2)] % exp(2'p* | Fn(2)|P + of| Fn(2)|P))
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forall z' C (not only Jn(z) < 0), |f (X)| % exp($2'p**sin("/p )P|x|P + o(|x|P)) for
x ! 0,and f (x + iy) = O(exp($ &x|P)) for |x| ! ) |y|. The following lemma, which
links the growth of f on the imaginary axis with decay of the Fourier transform,
proves that this example gives a solution for anyab < sin("/p ).

Lemma 1.6.6. B Let f be an entire function on C such that, forallz' C,
(1.35) If (2)| % exp(2'p* | Hn(z)|P + of| F(2)|P))
Assume that there exist&,) > 0 such thatf (x + iy) = O(exp($ &x|P)) for [x|! ) |y|.
Then
If (1)) % exp($ 2'g* 1|9+ of|! %)
as! *+& ,wherepl+ gfl=1.

Proof. B We brst show that foranyy' R,R> 0andn' N,

n!

$ %
Ak R*Mexp 2'p*1RP + o(RP) X

(1.36) If(1)] %

Indeed, by Cauchy formula,

[f M) %n!R*™ sup [f(2)].
|z# x|=R

When [x| > (1+ ) )R, we use the exponential decay of to bnd C,& > 0 such that
If M (x)] % Cn!R*" exp($ &|x|P).
For |x] % (1 + ) )R we use (.35 and bnd
If M (x)] %n!R*" exp(2'p**RP + o(RP)).

Both inequalities yield

If ™ (x)]dx % n!R*" exp(2'p# IRP + o(RP)),
R

which also gives .36). Now r\qve just have to minimize (1.36) with respect to R and n.
This is done taking RP = ra and n of the order 2" |!|9, where g is the conjugate

exponent of p. This gives the required decay forf . O

We show now that we have analogues of Theorem.6.5 for HardyOs uncertainty
principle. This corresponds to Theorem1.6.5for p=2.

Theorem 1.6.7 . B Let f ' S'(RY) and a,b > 0 such thatab > 1. Assume that
(1.37)  f(x)-+(x))exp("alxs[?) " S'(RY), F(11)-+ (11)exp("b|!1]?) * S'(RY).
Thenf =0.
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Proof. B We may assume thata = b > 1, and d = 1. Let F be the Bargmann
transform of f . We proceed as in the proof of Theoreml.6.5 The hypothesis onf
implies that
II (1 $ a)
2(1+a)
for ym(z) < 0, while the hypothesis onf implies that
$' (18 a) ,%
2(1+a)’
for I > 0. Sincea > 1, we have |F(z)| %,Cexp($&z|?) for z' R: orz' iRy,
for some & > 0. The function H(z) = F( z) is analytic on the lower half-plane,
continuous on the boundary, and satisPes
log|H (x)|dx
R 1+x2

We conclude as before thatf =0. O

(1.38) IF@)I%C1L+ [z)" exp 5 — | n(2)|* + IWE(Z)IZ%

(1.39) IF(1)] % C exp

= $& .

The condition ab > 1 is sharp since the standard Gaussian function satispes these
conditions for ab=1. However the same is valid for

(1.40) far (X)=exp($" (x+))%$ 2"0x ),
where), 0 are non-negative parameters. Its Fourier transform is given by
far (1) =exp($" (1 + 0)2+2i") (I + 0)).

Hence we see thaf 4. (x)exp("x 2) and If#,- (1)exp("! ) are bounded forx > 0 and
1> 0.

We can give a precise result in the critical case, when the condition on the Fourier
space is two-sided, and when it is one-sided oh.

Theorem 1.6.8 . B Let f ' S'(R). Assume that

(1.41) f(3-+(@exp("1af)" S'(R), F(gexp("|4f) " S'(R).

Then there exists a tempered distributiorn with support in ]$& , 0], such thatf = u%#
Conversely, every such function satisbe$§1.41).

Proof. © Debnep by 1 = (3 exp("|af). By assumption, p*' S'(R), and f = u%#
We have to show that p is supported by the negative axis. The distribution f , which
is a function, extends to an entire function of order?2, since p % #does. However we
will not be able to exploit the condition given oQBf d%ctly . Consider instead F, the
Bargmann transform of f . We have F (z) = exp Lz2 1% # %), hence

( F (Z)/_ ] I-ll Ty
where*,(t) =1/ 2exp $ —tz +$tz Thg}functlon F is the Laplace transform of
the distribution 1 =1/ Zu(é exp $ z|af .
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As in the proof of Theorem 1.6.7, we have the estimate
$ %
IF(2)] % C(1+ [z)" exp §|sz|2

for Rez > 0. The assumption onf implies that
F@I%CE+ [2)" exp 5| R
forall z' C. Now we use Lemmal.3.2to bnd that
IF(@)|%C+ |z)"

for Ke(z) > 0. Classical results on the Laplace transform (seelp], p 191) imply then
that 1 is supported in the negative axis. This proves thatu is supported by [$& , 0].
O

Remark 1.6.9 . B All functions of the form f = # % pare entire functions of order2
on C, and if p is supported in]$& , 0], we have

If ()] % C(1+ x)N exp($"x ?)
whenx ! 0, and

If ()1 % C(L+ [x)"

when x % 0. So the conditions onf can be restated as in HardyOs Theorem as a
polynomial growth property. But we can not do the same on the Fourier transform
side, sincelt may not be a function (take for example the functionu equal to 1 on R*

and 0 on R"). If we take pu' L supported in ]$& ,$ 1], we have non zerd ' S'(R)
such that

f(gexp("|af)' L" (R), f(gexp("|4af)' LP(0,&),
for any value of p' [1,& ]. Compare this to Theorem1.1.4

We end with remarks on distributions satisfying

(1.42) f(x)-+@exp("1af)" S'(R), F(3-+@exp("1aF)" S'(R).

All linear combinations of the form,,
(1.43) fu(x) = fur (X)u(),0)d)do

satisfy(1.42), as long asp is, for example, a compactly supported distribution, with
support inside the set"= {) ! 0,0! 0}.

We will use a very interesting property of the Bargmann transform, which can be
called a one-sided estimate for the Bargmann transform. Lef be a general distri-
bution, and assume that its Bargmann transform is well debned. This is the case for
example whenf (§exp($"& af) ' S'(RY), for some0 % & < 1. Proposition 1.2.5
states that f is tempered if and only if there existC,N > 0 such that for all z' C¢,

"%
|B(f)(2)| % C(L+ [z)" e><|O$§IZ|2 X

We will show that the Bargmann transform characterizes the distributions f whose
restriction to a half-line is tempered.
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Lemma 1.6.10 (One-sided estimates fox the Barggpann transform) B Letf ' D'(R)
be a distribution. Assume thatf (§exp $ %l af ' S'(R), so that the Bargmann
transform of f is well dePned. Thenf- . (§ is a tempered distribution if and only if

" 0/
(B BT+ [2)" exp gzl "
whenever Re(z) !

Proof. B The necessity of the condition is immediate, using semi-norms like previously.
We want to show that the relation
(1.44) (f* )2 Co BN B(*)(z)exp($" [z|°) dV(2)

cd
is true whenever* is a smooth function compactly supported in an interval[a, b, with
a > 0. Note that this is true for any tempered distribution and any Schwartz function
*, by Proposition 1.2.6

Let G be the function dePned by

G@= -2 _BEO@DBC (D) exp(3 " 2 OV (2),

wheref((x) = f (x( 1+ &exp($"&x?) and * ((x) = *(x( 1+ &exp(+"&x?). By as-
sumption, for &! 1, f( ' S'(R), hence
(—.)  (.)
foxc _  °f
1+&  (1+&%¥2°
We will show that G is real-analytic on ]0, 2], continuous at 0, and (1.44) will follow.
Consider the function
b $ /
G(& 2 = *(x)exp $ " 1$§ 2"x(7$ fz

a

For &' 1, we have, after a change of variable,

G(& =

_ — o1 5
(1.45) G(&-= CQB(f) ﬁ exp $ 20+ 8

We brst show that this is a well debned expression whe@ % &% 2. When %e(z) !
we have by assumption .
0 Los. & %
2

*%(f) (7 exp $ 2(1+&)
$ (1% 9 2, %
2ir g R@F+ Sl m@F
Using integrations by parts, and the fact that * is compactly supported, for anyM,
there exists a constantCy, such that for all z,

0 " " 1
2 '1 Dls SR + 51 i)

22'8(& J exp(s” [212) AV (2).

(1.46)
%C(L+ |z])N exp

(1.47) |G(& 2| %Cn 1+ |2))*M exp
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Combmmg this with ( 1. 46) we get
0
*Q?(f) (7 ex

*

2 exp(s " 122)1G(& 2|

"(1+28
1+&

&
T 89

N#M $ 2 " %
%C(1+ |z]) exp $ ———=| Re(2)|” +2"b| Re(2)]

%C(L+ |z|)N*M,

Here C depends onb. Hence, choosingM big enough, we see that {.45) is an abso-
lutely convergent integral for Re(z) ! 0, and debnes a real-analytic and continuous
function for 0 % &% 2

We now use the hypothes sf ex%$ '12] & F}, S'.\We write the expression
L 7%)as fexp $' /2|ai2 +(a,z) where
,%

2(l+()
$ ) 2o
+(x,z)=exp $ "/ 2x°+2 x(liT&$§z

We bnd the estimate
0 1 "8 %

$
B g P :tsz(lhga 2
(1.48) (33 & .
wC+ 2D exp g | e+ @)

that we will use for Re(z) % 0. For G(&, 2, we use the fact that whena % x % b and
Re(z) % 0, we havex Re(z) % 0. We obtain, for every M > 0, a constant Cy; such
that for all z with Re(z) %0,

(149)  1G(&21%Cu (L+ )" exp’$ S| Rl + S (P

If we combine this with (1.48), we get
z ) O z 1 $ n

$
%C(1+ |z|)N #Moexp $

2 exp(s " 12)1G(& 2|

2'&
1+g

| Re(z )I2

%C(L+ |z)N#M.
We conclude that G(& debned by (.45 is continuous on [0, 2], and real-analytic
on 10, 2[.
It follows that )
G()= 'f,*".
We now look more carefully at the estimate (L.47) when &= 0. Using integrations by
parts, for any M, there exists a seminormPy,: on S(R), such that for Ke(z) ! O,

$ %
16(0,2)] % CPu ()1 + 12)*M exp o2l
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32 CHAPTER 1. HARDY’S UNCERTAINTY PRINCIPLE AND ITS GENERALIZATIONS

Here C does not depend onb and a. Recall that the constant appearing in (1.49
depends only on a seminorln of. ;I'his proves that there exists M' and C, such that

"= 1G(0) % CPw 1 (*),
and hencef- ; is a tempered distribution. O

*i*

Theorem 1.6.11 . P Letf ' S'(R), and F be the Bargmann transform off . Then
(1.50) f(3-+(@exp("1af)" S'(R), F(3-+(@exp("|4af)" S'(R).
if and only if there exist C,N > 0 such that for all z' C with %e(z)! O,
IF(2)| %C(L+ |z))" eXID(%I In(2)[?),
and for all z' C with ¥n(z) %0,
IF(2)| %C(L+ |z)" eXp(%l Re(2)|?).

Proof. B The necessity of the estimates can be established as in the proof of Theo-
rem 1.6.7. Assume now that the Bargmann transforr(n ofF r(a§ thesgupro%erties.

Consider t|EIe distrib tiono/gl debPned byg(x) = 1/ 2f (x/ ~ 2)exp >x? . We have
B(a)(z) = F( 2z)exp »z? . Hence

"%
BED] %+ 1) exp [z

. % _
whenever Re(z) ! 0. We also haveg(aexp$$ slaf °= f(é(( 2) ' SY(R). By

Lemma 1.6.1Q we haveg- ' S'(R), and hencef (3- (exp("|af) ' S'(R). We
apply the same method forf. O

Remark 1.6.12 . B It still remains open to characterize the entire functions F that
satisfy both estimates (1.50).
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CHAPTER 2

FURTHER RESULTS

This chapter is devoted to further extensions of theorems stated in the previous
chapter. HardyOs uncertainty principle, as stated in the distribution case, does not
give information on the structure of the solutions in the the case that we will call
sub-critical, when there are a lot of solutions, including non Gaussian. This is when
ab < 1in Theorem 1.3.3 We show that in dimension 1, the solutions are linear and
continuous combinations of the Gaussian solutions. We will encounter this situation
a lot in the next chapters, where we study more general versions of Hardy Theorem.
We cannot obtain such a precise result in higher dimensions, but we still prove that
the solutions can also be built with Gaussian functions. All that is proved with the
use of the Bargmann transform introduced in the previous chapter. This tool allows
us to state and solve an equivalent problem on entire functions of orde2. At the
end of the chapter we study also the one-sided Hardy conditions with the Bargmann
transform, and state the conjecture on the form of the solutions.

2.1. HardyOs uncertainty principle in the sub-critical case, dimension 1

We consider here the casab < 1 of Theorem 1.3.3 This amounts in this case to
characterize the spaceG(a, b) of distributions f such that

f(dexp(@' (3" S'(R), f(§exp(b"(d%) "' S'(R).
By Fourier inversion, G(a, b) is made of entire functions of order2. We can actually
prove the following:

Proposition 2.1.1 . blLetf ' G(a,b. Then f and f satisfy pointwise estimates of
the form

(2.1) If (x)] %C@+ |x)N exp@"ax?), [F(1)|%C@+ ') exp($"b! ?),
where C and N are constants depending only orf .

We see that we do not get any new elements iff(a, b) by giving conditions in S'(R)
instead of L" conditions as in (2.1). However we will see that it is not true in higher
dimensions. We need a lemma before proceeding to the proof of Propositidhl.1
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34 CHAPTER 2. FURTHER RESULTS

Lemma 2.1.2. B Letf ' G(a,b). Then f and f extend to entire functions such that
2.2) If(@%C@+ |z)" eXP(%IJM(Z)IZ), If ()] %C@+ |z) eXp(%IJM(Z)IZ),
where C and N depend only onf. Moreover, there exist (,& > 0 such that for all
X,y ' R with |y] % (|x],
(2.3) If (x + iy)| % C exp($ &2), |f (x + iy)| % C exp($ &*).
Proof of Proposition 2.1.1, assuming Lemma2.1.2. B We have

If(2)] %C(L+ [z)" exp$%| @ (x+ )] %C exp(s &)

when |y| % (|x|. As in the proof of Lemma 1.6.6, we have

$ %

If (x)] % C RM exp 5R2 ,

n!
2" x|R)"
where M is an integer depending onN. Minimizing over n and R amounts to take
2'R ? = an and for n the integer part of 2a"x 2. We bnd

If ()] % C(L+ [x)™ exp($ "ax ?)
for someM ! > M . The estimate for f is obtained in the same way. 0
Proof of Lemma 2.1.2. B By Fourier inversion, we have
f00= " fexp(blap, s .

where*, (1) = exp($"b! 2+2i"x! ). The right hand side extends to an entire function
(replacing x by any complex number). Let N be the order of T = f exp("b|&f). We
have

|1T1*Z_| % CN PN (*Z)!
where the semi-normpy is debPned in (L.7). Hence

If (2)] % Csup(1 + ']+ [z))" exp($"b! # + 2" ! || Jn(2)])
%

%C'(1+ |z)N exp(fb | Hn(2)|?).

The corresponding estimate forf is obtained in the same way.

We now prove (2.3). Let f1(z) = f (z)exp(a"z?). The restriction of f; to the real
axis is in S'(R). Hence there exist a functiong and n such that g(™ = f4, and g has
polynomial growth. The function g extends, asf, to an entire function of order 2.
Apply Phragmen-Lindel3f principle to g(z) exp(iCz?), for large C, in the domain
ly| % [x]. We get

lg(x + iy)| % C(L+ |x] + |y])™ exp(2C|xy]).
By Cauchy formula, we obtain for f (z) = g(") (z) exp($ a"z ?) the following estimate:
If (x+ iy)| %C(L+ [x] + [y)™ exp($a'x 2 + a'y2 +2Clxy)
for |y| % [x]/ 2. Then, if ( is small enough and we takdy| % (|x|, we get (2.3). O
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Estimates (2.2) do not seem to characterize elements 0&(a, b), since we actually
need .3) to get (2.1). In order to characterize the elements ofG(a, b), we need an
equivalent debnition in terms of an entire function. For that purpose, we will use the
Bargmann transform introduced in Chapter 1.

Lemma 2.1.3. D Letf ' S'(R), anda! 0. Let F be the Bargmann transform off .
Then f (§exp(a” (3?) ' S'(R) if and only if there exist C,N > 0 such that for all
z' C,

(2.4) IF(2)| %C(1+ [z exp$%i:$; -

" %
| K@+ S (D)

Proof. B Sincef (§exp(a"|af)' S'(R), there existC > 0, N ' N, such that
|.f,* -| % CPy (exp($ 2" (3%)* (3)

for all Schwartz function *. We apply this to *(x) = exp($" (x $ z)? + 5z?), and
obtain (2.4).

Now assume thatF satisbes 2.4). This is equivalent to

— $ % $" %
(2.5) |F(( 1+ az)exp Eaz2 [ % C(1L+ |z])®N exp §|z|2 ,
_ $. %
and by Proposition 1.2.5 the function G(z) = F(( 1+ az)exp faz2 is the
Bargmann transform of a tempered distribution T. But identifying the Bargmann
transforms, we see thatf (x)exp("ax?) = (1 + a)¥2T((1 + a)?x), and hence

f(3expa’ (9% ' S'(R). O

Using dilations, it is sulcient to study G(a,b) for a = b < 1. It follows from
Lemma 2.1.3 that the elements of G(a,a) are characterized by two conditions on
their Bargmann transform F:

$n 1$ a n %
N 2 2
(2.6) F@I%CL+ 2" exp” 5 15| Re(@) + 5| ().
and
$|| 1$ a n %
N 2 2
(2.7) F@I%CL+ 2" exp” 5 7| (@) + 5| Re(2)".

We note here that (2.6) and (2.7) imply that
(2.8) IF(2)] % C eXp(E&le)

for some& < 1.in [17], it was already established that (2.8) characterizes the functions
f such that
f(x)= O(exp($"x %), (1) = O(exp($",! ?))

for some, > 0. Our point here is to show that (2.6) and (2.7) are a lot more precise,
and enable a characterization for bxed .
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Put w = mzz. By considering the odd and even parts ofF, we are lead to

characterize the entire functionsH on C for which there exist C,N such that for all
w' C,

(2.9) IH(W)| % C(L+ |w)" exp(w|$ a] Re(w)]).

Theorem 1.3.3 basically proves that for a = 1, only the polynomials satisfy this
estimate, and fora > 1, only the zero function satisbes it.

Assume now thata < 1. There are many entire functions satisfying .9), including
exponential functions. Namely, exp()z ) satisbes 2.9) if and only if ) ' K4, with

(2.10) Ka={) " C) +a%1,]) $a %1}

There are many results on the description of the classes of entire function of or-
der 1 satisfying estimate similar to (2.9), where the function in the exponential is

1-homogeneous and convex. Hergw| $ a| Ke(w)| is not convex in w, since the set

{w;|w| $ a] Re(w)| % 1} is the union of two ellipses. The natural convex function

associated to our problem is the support function ofK 5, debPned by

*(w) = sup Re()w ).
#UK 5
An explicit formula for * is

2
ey (IS ARl for [ Re(w)l ! oz | ()
1$ a?| gn(w)| else.

Note that * (w) % [w| $ a] Re(w)].

Proposition 2.1.4 . B Let H be an entire function satisfying (2.9). Then there exists
C' > O such that for allw"' C,

(2.11) IH(W)| % C'(1+ [w)™ exp(* (w)).

Proof. D We need to prove this better estimate for | Re(w)| % —2—|Jn(w)|.
Consider the entire function Hy(w) = H(w)exp(i 1$ a?w). By (2.9), we have
[H(wW)| % C(1+ |[w|)N on the two half-lines dePned by| Re(w)| = ﬁ| Im(w)| and
Jm(w) ! 0. By Phragmen-Lindelsf principle, this bound is valid inside the angle, and
we get the required estimate. A similar argument works for#(z) % 0. O

Proposition 2.1.5 . D Let H be an entire function. It satisPes (2.11) for some C'
and N if and only if there exists a distribution u ' S'(R?), supported by'K 5, such
that

(2.12) H(w)=  expQw)du() ).
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Proof. B We will use Paley-Wiener type results of R0, 21]. There the authors char-
acterize the entire functionsH that can be written as

H(w) = » expOw )g() ) d2() ).
where g is square integrable on'K 5 with respect to the arc-length measured2. For
that, it is necessary and sulcient that H (w)exp($ * (w)) is square integrable with
respect to a measure orC naturally associated toK 4. In particular, any H such that

(2.13) IH(W)| % C(L+ [w)*™ exp(* (w))
can be represented this way, ifM is large enough.
Assume that H satisbes 2.11). We can write, for any M ,
H(w) = Py (W) + W Hy (W),

where Py, is a polynomial andHy, satisbes 2.13). By [20], wM Hy (w) can be repre-
sented as @.12), where p is aM -th order derivative of an element of L?('K ,). Finally,
Cauchy Formula yields "

! d)

k —

w" = 2i|| K . eXpOW )) k+1

for any k! 0, so that Py, (w) can also be represented this way. O

We come back to the description ofG(a,a). For any t ' C with gée(t%> 0, the
Bargmann transform of x * exp($"tx 2) isz * (1+ t)*¥2exp 5 1tz? . The ho-
1#t

mography C(t) = 1+ is also called the Cayley transform. It maps the half plane

{t; Re(t) > 0} onto the open unit ball {) ;|) | < 1}. Let
D(a, b= {t' C;Re(t)! a, Re(t*?)! b}.

For ab < 1, it is a compact, convex domain, delimited by a circular arc and a line. For
ab=1, D(a,b = {a}, and forab > 1, D(a,b) = ! . We can now give the following
complement to Theorem1.3.3

Theorem 2.1.6 . Pletf ' S'(R) anda,b>0. Thenf ' G(a,b if and only if there
exist distributions 1;, 1, on R?, supported by'D [(a,b), such that

(2.14) f(x)= exp(®"tx 2)dly(t)+ x  exp($"tx 2) dix(t).

Proof. B The caseab! 1 is covered by Theoreml1.3.3 Assume that ab < 1. After a
change of variables, we can always assume that= b< 1. Letf ' G(a,a), and let F
be its Bargmann transform. By (2.6) and (2.7), we can write

F()= H $ 2%+ H $ ,%
W= aae® T e
where eachH; satispes 2.9) for someC,N > 0. By Proposition 2.1.5 we can write
_ ") 2 ") 2
F@)= el 2 a0+ 2 el 52 die0),
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where 4; and . are distributions supported by 'K 5. Note that t ' 'D (a,a) if and
only if (1+ a)C(t)" 'K 5. Hence we can also write

F@)= @+ 07 2emCO2)dum+ 2 1+ )* Y2 exp(,C ()27 d(t),

where 1; are supported by 'D (a,a). Formula (2.14) follows by taking inverse Barg-
mann transform. O

Remark 2.1.7 . B Since any function f (x) = exp($"tx ), for t ' D(a,b), satisbes
If (x)] % exp($"ax?2) and |f(1)] % Cexp($"bx?), (2.14 gives directly Proposi-
tion 2.1.1 Formula (2.14) states that any element of G(a, b) is an average of Hermite
functions belonging to G(a, b). Indeed, any distribution 1 supported by 'D (a,b) can
be decomposed as a sum of partial derivatives of Pnite measures db (a, b): there

exist bnite measuresm,,...,my on'D (a,b) such that for all x' R,
N "
f(x)=  xX exp($ "tx 2) dmy(t).
k=1 )D (a,b)
2.2. HardyOs uncertainty principle in the sub-critical case, dimension d

We now discuss the sub-critical case of Theorert.3.5 Debne byG(A, B) the space
of tempered distributions satisfying (1.15). If both are non positive, we cannot expect
in general solutions to be entire functions, as will be shown in the next chapter. Unlike
dimension 1, it is not obvious that the elements of G(A,B) are entire functions of
order 2 if A is positive and B non positive. However, whenA and B are positive, we
can prove the analogue of Propositior2.1.1:

Proposition 2.2.1 . b lLetf ' G(A,B), where A,B are positive matrices. Then we
have a pointwise estimate

If(x)| % C@+ XN exp($",Ax,x-), IF (1) %C@+ |'NN exp($",B!,! -),
where C and N depend only onf .
Proof. B Do a change of variables so thatA and B are diagonal. First prove esti-

mates as in Lemma2.1.2, then argue as in the proof of Proposition2.1.1, proving the
estimates for each variable. O

Let A,B corresponding to the sub-critical case of Theorenl.3.5 We can assume
that |1 $|B] is positive, doing a dilation if necessary. The Bargmann transform gives
also a characterization of G(A,B):
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Proposition 2.2.2 . D Let A, B be as above. Lef ' S'(RY), and F its Bargmann
transform. Then f ' G(A,B) if and only if there exist C,N > 0 such that for all
z' CY,

@15)  IF@I%CL [2)" exp , C(A) Rel@), Rela)-+ 5] (D
and

(2.16) IF(2)] %C(+ |z)™ exp$%,C((B ) In(z), Im(z)- + %| %(Z)F%
for (=1,%1

Here C stands for the Cayley transform,
CM)=(1$M)I +M)*L

This is proved as for LemmaZ2.1.3 We point here that the condition on | $|B] is
technical. In the next chapter, where we consider critical pairs, we will see wha€ (B)
should be replaced by, wherlA| = [B| = | (Corollary 3.3.4).

If A and B are both positive, Proposition 2.2.2 is true without assumptions on
B, since C(B) is then well debned. Moreover, there existd < & < 1 such that
,C(A)X,x-% (1$ &|x|> and ,C(B)!,! - % (1$ &|'|?>. Combining (2.15 and (2.16),
we see that

(2.17) IF(z)] % C(1+ |z|)2exp(%(l$ &12)|z|?).

The inverse Bargmann transform gives then thatf and are entire functions of order
2, as in Proposition 2.2.1, see B, 17]. We will get here a more precise result, similar
to Theorem 2.1.6, but less precise.

Debne, forA, B positive,

D(A/B)= {M "' Sq(C); Re(M)! A Re(M*)! B},
where S 4(C) is the set of complex symmetric matrices with positive real part.

Theorem 2.2.3 . b Let A,B be two positive matrices. Letf ' G(A,B). There ex-
ist Pnite measuresp;,adauy on S4(C), whose support in compact, polynomials
P4,...,Pn, such that

1 N "
(2.18) f(x)= Pc(xX) exp(®" ,Mx,x-)dyi(M).

i=1
Here N depends only onf . Conversely, any entire function debPned by2.18) belongs
to some spaceG(A, B), with A, B positive.

Proof. B Let F be the Bargmann transform off . Consider, forO0< & < 1,
K(={M "' S,(C)|,C(M)z,z| % (1$ &/2)[z|* /2" cY}.

It is a compact subset of S4(C). By estimate (2.17), D(A,B) 0 K, for some
& > 0. Taking Bargmann transforms of both sides of @.18), we are lead to the
characterization of entire functions F on CY, satisfying an estimate like |F (w)| %
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C(1+ |w]N exp(lw|?). We can consider the odd and even parts in each variables, and
it sulces to characterize entire functions satisfying

IF(w)] % C(1+ |w)™ exp(lwy| + & |wy|)

in terms of the exponentialsexp(w ), , ' CY. We claim that any such function can

be represented as

$ .. P

(2.19) F(w) = exp €“tw; + dad*wy di(/),

[0,y
where 1 is a distribution debned on[0, 1]%. Indeed, when we develop both sides into
power series, we get

1(n) = F(M(0).
But the estimate on F implies, by Cauchy Formula, that
[F(M(0)| % Cn,ldadg!RN# N1#84nd ayn(R, + 444 Ry)

for any Rj > 0. When R; = n;, we bnd

[FM©O]%C@+ )N */2.

It follows that the series = | F(M(0)é™ converges to a distribution. This completes
the proof of (2.19. Going back to the Bargmann transform of f , this proves that it
can be written as
'N
$" (1 2
(2.20) Pi(2) exp M
i1 [0.1)¢ 2

. ) %
(%22 + 444 €%922) dL(/),

with distributions 1; debned on[0, 1]°. After applying inverse Bargmann transform,
we get (2.18), with distributions supported in K. The distributions are actually
supported by the set of M such that

C(M) = Diag() 1.---,) a),
)il =1 $ &2, which is much smaller that 'K (. O

Remark 2.2.4 . B We used in the proof of Theorem2.2.3a simple Paley-Wiener type
result for entire functions of order 1, just like in the proof of Theorem 2.1.6 But this
time it can be solved easily with Fourier series. Theoren®2.2.3basically proves that any
element of G(A,B) can be represented as an average of complex Hermite functions.
Remember that whenAB has an eigenvalue such that |, | > 1, then f =0, and that
the measures above are Dirac masses 8 = A when the eigenvalues oAB are 1 or

$ 1, by Theorem 1.3.5

This result is not as precise as Theoren2.1.6, since this time we do not have control
over the support of the measures. The issue is thatd.17) is stronger than (2.15 and
(2.16). We are interested in the case where all eigenvalues &B are in ]0, 1], one of
them being in ]0, 1[. Do a change of variables so thatA and B are diagonal and equal.
This is possible sinceA and B are positive. The diagonal coelcients a; are such that
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O<aj %1, and we can assume thaty; < 1. Just as (2.9), equations (2.15 and (2.16)
can be rewritten as

$ 2] L F & Re(zP)
2.21 F(2)|%C@@+ |z)N - ! - il e
(21)  F@I%CE+z)exp s T8 ST S
Thus we are lead to characterize the entire functions satisfying the estimate
$' X o
(2.22) IHW) %C@L+ W) exp™  wil$ " & Re(wi)"

i
An exponential function exp() ;w; + aa# ) ywy) satisbpes 2.22) if and only if
O1---0)d)" Ka, "444"K,,,

where K 5 is debPned by @.10). The indicator function of K,, "ada" Ky, is +(w) =
*a, (W) + 444 * 4, (Wg), where*,, is the indicator of K,, . We do not know if there
is a Paley-Wiener Theorem for functions satisfying estimates Z.22). If they can be
represented as an average of the exponentiaxp()z ), for ) ' Ko, "aéda"Ky,,, then
the measures in Theorem2.2.3 are necessary supported byD (A, B), and actually
by a subset of'D (A,B). There is probably a relation with this set and the Shilov
boundary of 'D (A,B).

So brst we would like to have the convexl-homogeneous functiont+ in the expo-
nential in (2.22).

Conjecture 2.2.5 . D Let the entire function H satisfy (2.22). Then
[H(wW)] % C'(1+ [w)™ exp(+(w))

In dimension 1, it was proved using Phragmen-LindelSf principle. The same
method does not seem to work. Now observe that (w) % |w;i|$ a;| Re(w;)|, so by
Phragmen-LindelSf principle, Conjecture 2.2.5is equivalent to:

Conjecture 2.2.6 . D Let the entire function H satisfy (2.22). Then
[HW)[%C'(L+ (W)™ exp( | $ a] Re(w))]).

The last issue is that very few is known about Paley-Wiener results for functions
satisfying the estimate of Conjecture2.2.5 whend ! 2. We refer to [19] for recent
results. Note that [20, 21] only consider the cased = 1.

The problem is more complicated when considering matrices\, B that are not
positive. Assume that A is positive and B invertible, as in Theorem 1.3.5 Then one
can assume thatA and B are diagonal, with coelcients & and by, and that |h| < 1.
We could assume thata; = || % 1, but then | $|B| could be non positive. The
estimates of Proposition2.2.2 can be rewritten as

$n ' 1$ a:
N |
(2.23) IF@I%CA+[z)" exp 5 a

" %
| Re(@)? + S| (D)
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and

$u 1$ (b n %
N i N2 . 2
(2.24) [F(2)] % C@A+ |z])" exp > 1+ (b | In(z;)|° + 2|§€e(2)| ,

i
for ( =1,%1. Recall that Proposition 2.2.1 was established only whenA and B are
positive. In the general case, we do not even know if extends to an entire function.
SinceA is positive, f does. This would be the case if we had the following:

Conjecture 2.2.7 . D Let the entire function F satisfy (2.23 and (2.24). Then there
exists 0 < & < 1 such that

! " 0/
F@I%C @+ 12 exp 515 Gz -

Note that this estimate is true for &=0.

2.3. One-sided HardyOs uncertainty principle.

We conclude this chapter with a discussion on Theorenml.6.11 We do not have
a description of the distributions satisfying (1.50. We would like a description in
terms of averages of simple function satisfying these conditions, like in Theoren 1.6
and 2.2.3 The simplest functions we think about are debned by {.40). We have

Bl V(@)= €5exp(®2() +i0)+ 50 +10)2)
For simplicity we will rather take the functions debned by
Blan)() = exp 5 WS "wz -
so that gs+ is proportional to fyg: .

Proposition 2.3.1 . B Let u be a tempered distribution onC = R2, supported by
#= {w' C,Re(w)! 0,4n(w)! 0}. The expression

$ ) %
(2.25) Blou)(z)= exp $ Elwl $ "zw du(w)
debnes an element of'(R) satisfying (1.50).

Proof. B Let *,(w) = exp($"/ 2Jw|?>$ "zw)). Sincep' S'(R?), there exist C,N such
that

Fn *

* n
*

*

$_ " % x N $ L%
exp $ §|W| $"zw dp(w)«%Cpn(*2) %C(1+ |z|)" exp E|z| .

By Proposition 1.2.5 g, is a well dePned element of5'(R). Note that when p is a
compactly supported measure,

gu(x) = ( 2 exp(3"(x+ a)?$ i"ab $ 2i"bx ) du(a+ ib),

and we see directly that it satisbes 1.50).
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When p is any distribution, we prove that F(z) = %(g.)(z) satispes the estimates
of Theorem1.6.11 Let - be a smooth function, equal tol on#,andtoOon# $ (1+1).
Put - ;(w) = - ($w), with $=(1+ |z])# 1. We have

IF2)] =% -2(W)* 2 (w) du(w)x % Cp(- 2* 2)n

n %

% C sup(L+ |w| + |z])N exp$$ E|w|2$ " Re(zw)

where the supremum is taken ovew such that Re(w) !'$ $,In(w) !'$ $.If Re(z)! 0
then Re(zw) ' $ $ Re(W) $ In(z) In(w) ! S| In(2)|| In(w)|$ O(1), so that

IF (2)| % C sup(1 + [w| + [z)™ exp($"/ 2Iw|* $| Fn(2)|| Sn(w)])

%C(+ |2)N exp(" 2| Mn(2)]?).
The other estimate is obtained in the same way. O

Conjecture 2.3.2 . D Assume thatf ' S'(R) satisbes(1.50). Then there exists a
tempered distribution g on R?, supported by# , such thatf = g,.

We note that the distribution p is not uniquely debned. Indeed, we have the re-
producing formula of the Bargmann space,

F(z)= F(w)exp($"|w|?+ "zw)dV(w),
C

where dV is the normalized Lebesgue measure i€ = R?. So we havef = Ou. given
any f ' SYR), taking du(w) = F(wW)exp($"/ 2|w|?). This is indeed a tempered
distribution, since

IF (W) % C(L+ [w)N exp("/ 2w|?).
In view of (2.25), Conjecture (2.3.2 amounts to prove a Paley-Wiener type theorem
for entire functions satisfying the estimates of Theorem1.6.11, namely that they are
Laplace transforms of distributions 1 supported by # , such that exp("/ 2|af)d1' S'.
This is another type of Paley-Wiener result, for entire functions of order2, and with
an unbounded support.
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CHAPTER 3

CRITICAL AND NON CRITICAL PAIRS

In this chapter we introduce the spaceG(q, d) of the distributions satisfying Hardy
conditions, when the quadratic forms are not necessary positive. As in the case of the
classical Hardy Theorem, the Gaussian functions play a crucial role. We show that
there are three kinds of pairs of quadratic forms: the super-critical, critical and sub-
critical pairs. We give practical characterizations of them in terms of spectral prop-
erties of their matrices. The most interesting case is the critical one, where we show
that the Gaussian elements ofG(q, d) are parameterized by the groups of matrices
associated to the two forms. This will help us state the conjecture on the structure
of those spaces in the next chapter. In the last part of the chapter we give sulcient
conditions so that the spaceG(q,d) does not contain any non zero element, like in
Hardy Theorem in the super-critical case.

3.1. Introduction and debnitions

Definition 3.1.1 . D Let g and g be two non degenerate quadratic forms oRY. We
call G(qg,d) the space of the distributionsf ' S'(RY) such that

3.1 f(gexp(x"q(d) ' S'(RY), f(dexp(x"a'(9) ' S'(RY.

Proposition 3.1.2 . B The spaceG(q, d) is stable by dilerentiation and multiplica-
tion by polynomials.

This proposition is elementary.

3.1.1. Gaussian solutions. B In this section we will be interested in Gaussian
elements inG(q, d). We also consider complex Gaussian functions as follows:

Definition 3.1.3 . B A complex Gaussian function is a function of the form
f(x) =exp($",Ax x-),

x ' RY, where A is a complex symmetric matrix, whose real part is positive.
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If A= B+ iC, with B, C real, symmetric, and B positive, then A is invertible, and
A*l=(B+ CB*lC)*tg iB*c(B + CB*IC)* L
We see that Re(A# 1) % Re(A)* L.

Definition 3.1.4 . P Let q,d be two non degenerate quadratic forms. We will call
the pair (g, d) a sub-critical pair if G(qg,d) contains a non real Gaussian element. A
super-critical pair will be a pair such that G(q, d) does not contain Gaussian functions.
A critical pair will be any other pair, i.e., a pair such that the Gaussian elements of
G(q,d) exist and are all real.

In the sub-critical case, there is a lot of complex Gaussian functions irG(q, d).
Indeed, if exp($",Ax,x-) is one of them, then all gaussian functions of the form
exp($" ,A'x, x-), with Re(A) = Re(A'), are also elements of5(q, d).

Proposition 3.1.5 . D Let g, d be two non degenerate quadratic forms. Thes(q, d)
contains a Gaussian function if and only if there exists an invertible matrix P such
that [q(Px)| % [x|?, |g'(*P#11)| % |!|? for all x,!.

Proof. B If |q(Px)| % [x|?, [gf(*P# )| % |'|? for all x,!, then the Gaussian func-
tion exp($" |P#x|?) is in G(qg,d). Conversely assume that the Gaussian function
exp($",Ax,x-) is in G(q,d), with A complex symmetric, and Ke(A) positive. Then

190X)| % , Re(A)x, x-, |d(1)] % Re(A* 1)1, !
for all x,!. We have ®e(A* 1) % Re(A)* 1, and we conclude takingP = ( Re(A))* V2.
U

Proposition 3.1.5 implies that if the space G(q,d) contains a complex Gaussian
function f, then |f |' G(q.,d).

Proposition 3.1.6 . B Let g, d be two quadratic forms. Assume thats(q, d) contains
a Gaussian function. The pair (g, d) is critical if and only if |det(q)det(q)| =1, and
sub-critical if and only if | det(qg) det(q')| < 1.

Proof. B Using Proposition 3.1.5and a change of variables, we may assume that

1901 % Ix[?, 19 ()] % |7,
so that G(q,d) contains the standard Gaussian function#(x) = exp($" |x|?).

It follows that | det(q)| % 1 and | det(q')| % 1. If | det(qg) det(q')| < 1, we may assume
for example that g has an eigenvalue, such that |, | < 1. Let e« be an associated
eigenvector. Choose > 0 such that |, | = (1 + ?)#1, and dePneB by B(e:) = be,
B(x) =0 for x' €. Then the non real Gaussian function

f(xX)=exp($",(I +iB)x,x-)
belongs toG(q, d).
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Assume now that G(q, d) contains a non real Gaussian function. We show that
| det(q) det(q)| < 1. Let

f(x)=exp($",() +i0)x,x-)

belong to G(q,d), with ) positive and 0 a non zero real symmetric matrix. We have
Re() +1i0)*1=() + 0)#10)**, and hence
( )

la(x)| % )%, x -, |q(!)] %
for all x,!. It follows that

| det(q) det(q)| % det) det(() + 0) #10)*1) < det() )det() *1)=1.

() + 0) #10)#1!’!

This completes the proof. O

We now give a precise characterization of critical, sub-critical and super-critical
pairs. We begin with an algebraic one. A contraction is a matrixM such that tMM %
I, which means that [Mx| % [x| for all x ' R, where | & |stands for the Euclidean
norm.

Theorem 3.1.7 . B Let q(x) = ,Ax,x-, (') = ,A'l,!- be two non degenerate
quadratic forms. The pair (q,d) is critical if and only if AA' is conjugated to an
orthogonal matrix. It is sub-critical if and only if it is conjugated to a contraction
that is not orthogonal. It is super-critical in any other case.

Proof. B Assume that (q, d) is not super-critical. Let P be given by Proposition3.1.5
Put B = PAP and B' = P#!A''P#1 The eigenvalues ofB and B' are in [$1,1].
Hence |BB 'x| % [x| for all x, where | & | stands for the Euclidean norm. We see
that AA' is conjugated to a contraction. Assume moreover that(q,d) is critical.
Then | det(B)det(B')| = 1 by Proposition 3.1.6, so we see thatB and B' have their
eigenvalues of modulusl. It follows that B and B' are orthogonal and symmetric,
and henceBB' is orthogonal. If (g, d) is sub-critical, then one of the eigenvalues of
B or B' isin ]$ 1, 1], and there existsx such that |BB 'x| < |x]|.

Assume now that there existsQ such that Q* 1AA'Q is a contraction. Put B =
Q*IA'Q*! and B' =' QA'Q. By the polar decomposition, |B|B' is a contraction.
The symmetric matrix |B|Y2B'|B|Y 2 is conjugated to a contraction, hence it is itself
a contraction. Let P =' Q*1|B|* 2. Then 'PAP is orthogonal and P#1A''P#1 is a
contraction, so that G(q, d) contains a Gaussian function. Now use Propositior8.1.6.
If Q*1AA'Q is an isometry, then | det(AA')| = 1, and the pair (q, d) is critical. Else,
we have|det(AA')| < 1, so the pair is sub-critical. O

Theorem 3.1.7 characterizes critical and sub-critical pairs in a rather inexplicit way.

We give now an explicit description in terms of the spectral properties ofAA'. The
proof is left to the reader.
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Theorem 3.1.8 . B Let q(x) = ,Ax,x-, q(!) = ,A'l,! - be two non degenerate
quadratic forms. Then the pair (g,d) is critical if and only if AA' is diagonalizable
over C, with eigenvalues of modulusl. The pair (q,d) is sub-critical if and only if
AA' has a complex eigenvalugt such that |u| < 1, all its other eigenvalues have
modulus less than or equal tdl, and the restriction of AA' to the direct sum of the
characteristic spaces associated to eigenvalues of moduldsis diagonalizable. The
pair (q,d) is super-critical in any other case.

Remark 3.1.9 . B In other words, (q,%) is critical if and only if the minimal poly-

nomial of AA' has the form $(X) = ., (X $ 3), with |,| =1 for, ' % Itis
sub-critical if and only if it has the form $(X) = .., (X $,)", with |, | % 1 for
, " % n« =1 for|, | =1, and || < 1 for somep ' % The pair (q,d) is super-critical
ifand only if $(X)= ., (X $,)™, with %containing , such that |, | > 1, or such
that |,|=1 andn« ! 2.

As a corollary we have:

Corollary 3.1.10 . B Let g(x) = ,Ax,x-andd(!) = ,A'l,! - be two non degenerate
quadratic forms. Assume that|det(AA')| > 1, or more generally that AA' has a
complex eigenvalug such that|, | > 1. Then (g, d) is super-critical.

Given a non degenerate quadratic formg, dePne the group

(3.2) O(g) = {P ' GL4(R); q(Px)= q(x) /x' R}.
If A is an invertible matrix, we debPne also
(3.3) O(A) = {P"' GL4(R); '"PAP = A}.

When (g, d) is critical, all Gaussian elements ofG(q, d) are real. We will describe
them. After a change of variable, we may assume that the associated matrices and
A' are orthogonal and symmetric.

Theorem 3.1.11 . B Let q(x) = ,Ax,x-, q(!) = ,A'l,! -, with matrices A,A' or-
thogonal and symmetric. The Gaussian elements d&(q, d) are precisely given by the
functions

exp($ " 19(x)1%),
where the matrix g belongs to the groupD(qg) 1 O(q).

The Cayley transform of a complex matrix M is dePned by
CM)=(1$M)I +M)*L,

The Cayley transform appeared in the proof of Theoreml.3.1, as naturally involved
in the computation of Bargmann transforms of Gaussian functions. Indeed, iff (x) =
exp($" ,Mx, x -), with Re(M) positive, then

0,

(3.4) B(F)(z) =det( | + M)#1 exp$%,C(M )z, z-/f)
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We see immediately that positive matricesM are transformed through C in matrices
N such that | $ NN is positive. We have alsoC?(M)= M andC(M#1) = $C(M).

Theorem 3.1.11 relies on pure bilinear algebra. It is a direct consequence of the
following.

Theorem 3.1.12 . D Let A,A' be two orthogonal symmetric matrices. LetM be a
positive matrix. Then
)

(3.5) [,AX,x-| % ,Mx,x-/x"' RY, |,A!x,x-|%(M#1!,! /1 RY

if and only if ( M ' O(A) 1 O(AY.

Lemma 3.1.13. D Let ki, ko ' N such thatk, + k, = d. Denote any x ' RY by
X = (X1,X2), with x; * RX . Put g(x) = |x1]> $| x2|?. Let M be a positive matrix. Let
N = C(M). Then |g(x)] % ,Mx, x - for all x if and only if

(3.6) JNX, X - % 2|Xq||X2]

for all x' RY.

Proof. B We will use the conjugate function of a convex function* , which is given by
its Legendre transform* ((x) = sup,: 2,x,x'-$ *(x'). We have

sup$2,x,x!—$, Mx*' x'-$| x’|2%$|x|2/2: %,Nx,x-.
!
Hence
;,Nx,x-%sxu!p$2,x,x!-$ 2max(|x!1|2,|x!2|2)%$|x|2/2
= (Ixal + [x2D)?/ 28 x[?/ 2 = [xa||x2|.

For the converse, recall thatC(N) = M. Hence

$ 1 } | ] %
%,Mx,x- =sup 2,%,x-$, Nx', x"-$|x'|> $|x|*/2
- $ 1 1 1 |2% 2
I sup 2,x,x-$ 2|x3|[x5| $ | x|° $|x]*/2
X!
= la)l/ 2,
which completes the proof. O

We will prove Theorems3.1.12and 3.1.11in di"erent steps. Let us take notations.
Let M be a positive matrix. Let N be the Cayley transform of M, E; = Ker(A $ 1),
Ei=Ker(A'$1),E,=Ker(A+1)andEj = Ker(A'+ 1). We have the orthogonal
decompositions

RY=E,. E;= E}. Ej.
By Lemma 3.1.13 (3.5) is equivalent to

(3.7) $ 241Xl % Nx, x - % 2[xalx2l,
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where x1, X, X}, X5 are the components ofx in the orthogonal decompositions given
above. Theorem3.1.12amounts to show that under Conditions (3.7), M¥2' O(A) 1
O(AY).

We will brst consider the case whereA and A' commute.

Proposition 3.1.14 . B Let A, A' be two orthogonal and symmetric matrices. Assume
that A and A' commute. Let M be a positive matrix such thatN = C(M) satisPes
(3.7). Thnen MY2' O(A) 1 O(AY.

Proof. B A fundamental example is wherl1 5

1 0
0 $1

A:A!:

We have
[, NX, X -| % 2]x1]|Xz]
for all x = (x1,X2) "' R2. It follows from Eomogéeneity that

N=OV,
v O

for somev ' ]$ 1,1] (reAzfcaII that 1 $'N N5 is positive). Ihen we can comgute

1 1+v2  $2v NS t+ ¥l t$t*?t

1SV sy 1+ 2 t$tfl o r+tFl
with t = (#X)Y2 We clearly haveM Y2 ' O(A).

1+v
Assume now thatA = A' andd! 2. The matrix N satisbes

[, NX, X -] % 2|x1][X2],
hence, in the orthogonal decompositior‘f{d = Eé . E2, N has a bloc form

0 v
tv 0

for some matrix v, with d; lines andd, columns, such thatl $ tvv is positive. There
exist ki ' O(d;) such that k’f vk, is a quasidiagonal matrix, with zero entries in last

position, if any. Since the matrix c

ki O

0 kp
belongs to O(A), we can assume thatv is such a quasidiagonal matrix. ThenN has
a bloc decomposition, whose diagonal blocs are eithéd, or given by 2-dimensional

matrices of the form 4 5
0 v

Vi 0
with |vi| < 1, and the result follows from the Prst part.
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In the general case wheré\ and A' commute, there is a common orthonormal basis
of eigenvectors of bothA and A'. We may assume that the spaceR? is decomposed
so that for x = (X1, X2, X3,X4), X; ' R%, we have

AX = X1+ X2 3 X3 $ Xy, A'l = 111+ 13F 1,

By assumption,
(3.8) $ 2|(x1,X3)[|(X2, Xa)| % ,NX, X - % 2|(X1, X2)[|(X3, X4)|
for all x ' RY. We will show that N6 has the form

0 0 0 v

N = % 0 0 w 0; ,
0 'w O o;
'v. 0 0 O

wherev is a matrix with ds columns andd; lines, andw hasd, lines andds columns.
Hence|,NXx, X -| % 2|(x1, X2)|[(X3,X4)| and |, NX, X -| % 2|(x1, X3)||(X2, X4)|, SO that we
can conclude from the previous case.

Consider the canonical basige, ..., e4) of RY. When we apply (3.8) to x = g, we
obtain

(3.9 ,Nej,g-=0.
Moreover, taking x; = x, =0, we get
(3.10) ,N (0, 0,X3,X4),(0,0,X3,X4)- %0

for all x3,x4. The quadratic form on R%*d debned by .10 is semi-negative,
and the trace of its representative matrix is equal to zero by .9). Hence
,N (0,0, x3,X4),(0,0,x3,X4)- = 0. A similar argument shows that

yN (X11X2|01 0)1 (X]JXZ!O! O)_ = 1N (01X2|01X4)1 (01X2101 X4)_
= 1N (X1101X310)1 (X1101X310)_ = O

for all x1,X>, X3, X4.

Hence N has the required form, with v and w such that | $ ‘vv and | $' ww
are positive. It follows that ||Nx,x-| % 2|(x1,X2)||(X3,X4)] and |,Nx,x-| %
2|(x1, X3)||(X2, X4)|, for all x ' RY. We conclude using the casé\ = A'. O

We still take the notations given before Proposition 3.1.14 It is easy to check that
A and A' commute if and only if the eigenvalues ofAA' are all real (assumingA, A’
are both orthogonal and symmetric matrices). We now consider the opposite case,
namely the case whereAA' has no real eigenvalue. This happens exactly when the
spacesEq, E, E{, E} do not intersect each other.

Proposition 3.1.15 . B Assume thatAA' has no real eigenvalue. If 8.7) is satisbed,
thenMY2' O(A) 1 O(AY).
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Proof. B In this case the dimensiond is even, andEy, E», E}, and E} have dimension
d/ 2. Doing a rotation if necessary, we may assume thaE; = {(x1,0);x; ' R¥?},
E> = {(0,x2);x2 ' R¥?2}. Denote by x} and x5 the orthogonal projections ofx on E}
and E} respectively, and write X = (X1, X2), X1,X2 ' R¥ 2. Then the spacesE ], E} are
given by a graph in the decompositionR? = RY2 " RY2: there exists an invertible
matrix # such that

Ei={x" RExa=#x1}, E5={x' RY$%x2= x1}.
Doing further independent rotations in the x; and x, variables if necessary, we are
lead to the case wheregf is diagonal, with positive eigenvalues. Let&, ..., &, » be its
diagonal entries.

Put x, = 0 in Relation (3.7): we obtain ,N (x1,0),(X1,0)- % O for all x; '
RY2 We also have ,N(0,X»),(0,X2)- % 0, ,N(X1,#x1),(X1,#x1)- ! 0, and
NS X2, X2), (3# X2,X2)- | 0. Let (&) be the canonical basis ofRY?, so
that #¢ = &e. Taking X; = X, = €, we obtain ,N(g,€¢),(e,g)-! 0 and
N($e,e),($e,e)-! 0. Summing the two quantities, we see that

O%7N(a,e|),(€‘|,e|)'+ !N($elvel)1($elvel)_
:21N(ei!0)1(ei!0)_+21N(Oyei)1(oyei)_%0
This gives ,N (g, 0), (g, 0)- = 0. But since ,N (X1, 0), (x1,0)- % 0 for all x;, we must
have,N (x1, 0), (x1,0)- = 0. We can prove in the same way that,N (0, x»), (0,x2)- =0
for all x,. It follows that there exists a rEatrix vssuch that

0 v
tv 0
By Proposition 3.1.14 we haveM Y2 ' O(A). By symmetry, we also haveM /2 '
O(A"), which concludes the proof. O
We still take the notations given before Proposition 3.1.14

Lemma 3.1.16. D Let A, A’ be two orthogonal symmetric matrices, and
F=Ker(AA'$ 1). Ker(AA'+1).
Then F is the space spanned by the common eigenvectors Aoand A'.

Proof. B If x ' Ker(AA'$ 1), we have AA'x = x = A'Ax, since (AA')*1 = A'A,
hence AA'Ax = Ax and Ax ' Ker(AA'$ I). We see that KeAA' + |) are stable
by A and A'. It follows that F is spanned by eigenvectors oA belonging to either
Ker(AA'$ 1) or Ker(AA'+ 1). Let x ' F be such an element. We havedA 'x = (x
and Ax = ux, with (1 '{$ 1,1}. It follows that A'x = (ux, and we see thatF is
spanned by common eigenvector taA and A'. Now any common eigenvector toA and
A' belongs toF, so the result follows. O

Proposition 3.1.17 . B Let A,A' be any orthogonal symmetric matrices. If 8.7) is
satisPed, thenM 2 ' O(A) 1 O(A"Y).
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Proof. B Denote by F the space generated by the common eigenvectors # and A'.
The spacesF, F& are stable by A and A'. We show now that they are stable byN,
i.e., ,Nf,g-=0forall f' Fandg' F¥&.

Given any x ' RY, let x1,x, be the projections ofx on E; and E,, and x},x}, be
the projection of x on Ej, E}. By assumption,

(3.11) $ 2xi[|x5] % ,NX, X - % 2|x1|[X2].

Let f ' F be a common eigenvector toA and A'. We assume for example that
f' E11E].

The spacesF&® 1E;, F& 1 E,, F& 1 E] and F& 1 E} intersect pairwise on the null
space by debnition ofF. As in the proof of Proposition 3.1.15 we see that they have
the same dimension, equal tadim(F &)/ 2, and in particular

F&=F%1E,. F¢1E].
Take g' F& 1 E;. Relation (3.11) gives ,Nf,f -=0 and forall t' R,
N (@{f + g),tf + g-=,Ng,g-+2t,Nf,g-%0.
Hence,Nf,g - = 0. The same is true wheng' F#% 1 Ej, since then for allt' R,
,N(@{f + g),tf + g-=,Ng,g-+2t,Nf,g-! 0.

We showed that N stabilizes F and F&. We conclude with Propositions 3.1.14
and 3.1.15 considering the restrictions of A, A',N to F and F&, respectively. O

Proposition 3.1.17and Lemma 3.1.13imply Theorem 3.1.12 We proved that the
Gaussian elements of5(q, d) are parameterized by the group of matricesG = O(q) 1
O(q). Let K = O(d) 1 G. Since|g(x)| = |kg(x)| forall x ' RY,g' Gandk' K,
those Gaussian elements are actually parameterized by the symmetric spa&K . The
proof of Theorem 3.1.11gives then an interesting description of the Cayley transform
of G/K . It can happen that G = K. In that case, there is only one Gaussian element
in G(qg,d). The condition when this occurs is given by the next Theorem:

Theorem 3.1.18 . B Let g(x) = ,Ax,x- and ¢(!) = ,A'l,! - be two non degener-
ate quadratic forms, with A and A' symmetric and orthogonal matrices. LetF =
Ker(AA'$ 1). Ker(AA'+ 1). Then G(q,d) contains only one Gaussian function if
and only if the non real eigenvalues ofAA' have multiplicity 1 in the characteristic
polynomial of AA', and A or A' restricted to F is the identity matrix | or $1.

Proof. B By Lemma 3.1.16 F and F& are stable by A and A'. Moreover the proof of
Proposition 3.1.17shows that any matrix N satisfying (3.7) has a bloc decomposition
according to the decompositionR? = F . F%. Hence is sulces to consider separately
the casesF = RY and F = {0}.

Assume that F = RY. All the eigenvalues of AA' are real. After a change of vari-
ables, we can assume thaf and A' are diagonal, with diagonal coe!cients ay, ..., a,
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and aj,...,a, equaltolor $1. If A and A' are not equal to |l or $1, there exist
i =] suchthata = a and a = aj , and any Gaussian function of the form
$ ' %
exp $" Xg $ "19(xi x)I?
k¥ i

with g' O(1, 1), belongs toG(q,d). If A or A'is| or $1, then Theorem 1.3.5shows
that G(q,d) contains only the standard Gaussian function.

Assume now that F = {0}, so that all eigenvalues of AA' are non real. Take
the notations of the proof of Proposition 3.1.15 We can assume that the matrix #
introduced there is diagonal, with positive coelcients. Let N satisfy (3.7). Then by
the proof of Proposition 3.1.15 we have

NX,x-=0
for all x in E; or E,. HenceN has the Ilorm

0 v
tv 0

But by symmetry we have ,Nx,x- =0 for x in E] and E}. It follows that v# and # v
are antisymmetric. We have the relationsv;; & = $&v;; andv; & = $&v;; on the
coelcients of v. Hencev = 0 is the only choice if and only if all the & are di"erent.
To conclude the proof, note that the eigenvalues ofAA' are exactly the d numbers

1% 2i8
(3.12) 1+§i1+8§'
Indeed, in the orthonormal basisey, ..., ey we chose AA' has a representative matrix
given by 4 5
C('##) 2( |+ #lty
$2(1 +# H) * 1y C# '#) ’
where C is the Cayley transform. In the basise;, €y 241, . .., €y 2, €4, AA' will have a

representative matrix which is bloc diagonal, Witg blocs of size2 equal to
1# (2 2(;
8 1+ (i 1+ (.2 '
2(; 1# (;
$ (2 (7
Hence the eigenvalues oRAA' are given by (3.12. O

Unlike Theorem 3.1.8, the condition does not depend on the matrixAA' itself, so
that it is dilcult to give a condition when (q,d) is a critical pair, without A and A'
being orthogonal symmetries. Nevertheless, we have the following sulcient condition:

Corollary 3.1.19 . B Let q(x) = ,Ax,x- and ¢'(!) = ,A'l,! -, where A and A' are
symmetric invertible matrices. If AA' hasd distinct eigenvalues of modulusl, then
G(q,d) contains only one Gaussian function.
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Proof. D As before, we can assume that the eigenvalues &A' are all real or all non
real. If they are all non real, Theorem 3.1.18 gives the result. Now assume that the
eigenvalues ofAA' are equal to1 or $1. Then d % 2. The cased = 1 follows from
Theorem 1.3.3 Assume thatd = 2, and that 1 and $1 are its eigenvalues. Make a
change of variables so thatA and A' are diagonal, with eigenvaluesa;, a,, aj, a5 equal
to 1or$1. We havea; = aj anda, = $a5, or a; = $a; and a; = a,. It follows that
A or A'isequaltol or $1, and we conclude with Theorem1.3.5 O

3.1.2. Remarks. B In the sub-critical case, there are real and non real Gaussian el-
ements inG(q, d). It still seems dilcult to give a precise description of them. However
Theorem 2.1.6 gives the answer in dimension one. The general idea of our analysis
is to show that in the super-critical case,G(q, d) does not contain a lot of solutions.
We will give singular examples whereG(q,d) contains only singular distributions.
We will show that, for many super-critical pairs (q,d), G(q, d) does not contain any
function. Then we will try in some cases to describe completelyz(q, d) when(q, d) is
a critical pair. The conjecture that we formulate after our study is that the Gaussian
elements ofG(q, d) generate all its elements, using averages, di"erentiation and mul-
tiplication by polynomials (see Proposition 3.1.2). For example, when (g, d) satisbes
the conditions of Theorem3.1.18 we expect the space5(q, d) to be exactly the space
of Hermite functions associated to its unique Gaussian element. We will not be able
to show this fact, unlessq or ¢ is positive. For example we do not know if it is true
for g(x) =2xi1x; and g (!) = '2$ 12 on R?.

3.1.3. Annihilating pairs of quadratic forms

Definition 3.1.20 . D The pair (g,d) of non degenerate quadratic forms orRY is
called an annihilating pair if G(q,d) = {0}.

An annihilating pair is necessarily super-critical. If (q,d) is annihilating, then any
f ' L?(RY) such that, for |x|,|!'| * &
f(x)= O(exp($" [ax)), (1) = Oexp($" Id'()]),

is equal to 0. Such a property is an analogue of HardyOs uncertainty principle for non
degenerate quadratic forms. Theoreml.3.5 gives the annihilating pairs (g, d), when
gor g is positive:

Proposition 3.1.21 . B Let A and A' be two symmetric matrices, withA positive. Let
a.d be the quadratic forms associated té\ and A'. Then the pair (g, d) is annihilating
if and only if the matrix AA' has an eigenvalug such that|, | > 1.

We call a pair having this property an annihilating pair by reference to annihilating
pairs of sets, as debned inl4].
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Definition 3.1.22 . B Let E,F 0 RY be two measurable sets. The pai(E,F) is
called a weakly annihilating pair if anyf ' L? with support in E and spectrum inF,
is equal to zero. The pair is strongly annihilating if there existsO % ¢ < 1 such that
for all f * L2(RY), with support in E,

. ()17 dt % cHf #, o) -

The link between Debnitions3.1.22and 3.1.20is the following.

Theorem 3.1.23 . B Assume that the pair (g, d) of non degenerate quadratic forms
is annihilating. Let C,C' > 0, and dePne the sets

E={x" R%lax)|%C}, F = {!" R%|d(")|%C'}.

Then any tempered distribution f with support in E and spectrum in F is equal to
zero. In particular, (E,F) is weakly annihilating for L? functions.

Note that the notions of strongly/weakly annihilating pairs of sets was debned for
functions in L2. It can as well be debned for functions ir_P spaces. Classical examples
of strongly annihilating pairs are pairs of sets of bnite measurel]. It is proved in [25]
that the pairs (E, F), with

E={x" R%lax)|%C}, F = {!" R%|d(")|%C",

are strongly annihilating, provided the product CC' is small enough ¢ and  are here
any non degenerate quadratic forms). We believe that those pair¢E, F) are weakly
and strongly annihilating without restriction on C,C'. There are trivial counter-
examples when one of the form is degenerated.

Note, however, that particular cases can be proved using the following, which is
a corollary of the classical proof for pairs of Pnite measure {, 14]. An elementary
proof can be found in BJ:

Proposition 3.1.24 . D Assume that the subset€ and F of R have the following
property: for almost everyx ' R9Y, the lattice x + Z9 intersects E and F on Pbnite sets.
Then the pair (E, F) is weakly annihilating.
Corollary 3.1.25 . DB The pair of sets (E, F), with

E={(xy)' R%Ixy|%C}, F={($)" R%|'$|%C'},

is weakly annihilating, for any value ofC and C'.

Note that we can also translate and take rotations of the sets above. Moreover, we
can take bnite unions of such sets.
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3.1.4. Examples in dimension 2. B Assume that g is positive. After a change of
variables, we write

ax,y) = x2+y? d(1,$) = al? + b¥,

with a,b' R\{ 0}. Then the pair is annihilating if and only if max(|al,|b]) > 1, by
Theorem 1.3.5

Assume now that neither g nor ¢ is positive. The issue is that they may not have
a common basis of reduction as above (see PropositioB.2.1 below). So we assume
moreover that q and g can be put, after a change of variable, in the form

axy)= x2$ y? d(,$)= al’$ b¥,

with a,b > 0. The di"erence with the previous case is that G(q,d) £ {0} when
a= b> 1. It does not contain any Gaussian function, since det(qg) det(q')| = a? > 1,
but the distribution &x $ y) debned by

(3.13) JBX B y),*-= *(x,x)dx
belongs toG(q, d).

Theorem 3.1.26 . D Let a,b > 0, and q(x,y) = x>$ y?, ¢ (,,$) = a!?$ b¥. Then
G(qg,d) = {0} if and only if max(a,b) > 1 anda= b.

Proof. ® When max(a,b) % 1, G(qg,d) contains a Gaussian function, by Theo-
rem 3.1.8 Whena= b! 1, (3.13 gives a non zero element of5(q, d).

Assume now thata > b and a > 1. If we divide ¢ by a suitable constant, we can
assume thata> 1>b> 0. Letf ' G(q,d). Fix a polynomial P onR andb <t< 1.
Consider the tempered distribution Tp debPned onS(R) by

1TP1*-: yfv* ) P#t-r

where * ) P#(x,y) = *(X)P(y)exp($"/t |y|?). Let Q be the polynomial such that
P # is the Fourier transform of Q#y; . We have

Te,* = £,*) Q¥ -

Using the inequality x> $ Uty 2 % X2 $ y?|$ (1/t $ 1)y?, the fact that t < 1 and
f exp(x"q) ' S'(R?), we bndTp(gexp("|af) ' S'(R). In the same way, using the
fact that t> b, we getTs (§exp("alaf) ' S'(R). Theorem (1.3.4) gives thenTp =0.
Since it is true for any polynomial P, Lemma 1.2.2 givesf =0. O

Remark 3.1.27 . B Theorem 5.3.2 will describe the elements ofG(q,d) when a =

b > 1, while Theorem 5.1.6 describesG(q,d) for a = b= 1. We do not have any
analogue of Theorem2.1.6 for the casemax(a, b) % 1.
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3.2. Annihilating pairs when d! 2

Let g and ¢ be two quadratic forms debned by
aix) = ,Ax, x-, q(!)= ,A'l,1 -,

with A, A' real symmetric and invertible matrices. The nature of the spaceG(q, d) is
unchanged by a linear change of variable, s&(q, d) is conjugated to G(g,€), where
g(x) = q(Px), (') = g(*P#11), and P is an invertible matrix. We will focus our
attention to the case whereP can be chosen so thag and ¢ are diagonal:

Proposition 3.2.1 . D Let A and A' be two symmetric matrices. Then there exists
an invertible matrix P such that'PAP and P#*A''P#1 are diagonal if and only if
AA' is diagonalizable overR.

Proof. D If P exists, then the matrix 'PAA''P#1 is diagonal. Conversely, if
'PAA''P#1 js diagonal, then the two matrices'PAP and P#1A''P#1 commute, so
that they can be diagonalized by the same orthogonal matrixQ. Put R = PQ. Then
'RAR and R**A""R*! are diagonal. O

Remark 3.2.2 . B The matrix AA' is diagonalizable overR for example whenA or
A' is positive, or whenA and A' commute.

We are reduced to quadratic forms debned by

' d ' d
(3.14) = ()= iR

i=1 i=1
where(; '{$ 1,+1} and,; ' R(.
As a consequence of Propositior3.1.21, the following is true.

Theorem 3.2.3 . B Assume that(; = 1 for all i. Then G(qg,d) = {0} if and only if
max; |, i| > 1.

Without assumption on g, we can establish the following result.

Theorem 3.2.4 . B Let | = {i;|,i| = maxy|, k|}. Assume that all the, ;, for i ' I,
have the same sign, and thamax |, x| > 1. Then G(q,d) = {0}.

Proof. B The proof follows the lines of the one of Theorem3.1.26 We can assume
that g has the form

rdo '
q()y=a g+ NIk
i=1 i>d o
with a > 1 and |,i| < 1for i > do. Chooset such that 1 >t > maxyq,|,i]. Let

f ' G(q,d). Debne the distribution Tp on R% by
1TP!*-: ,f,* ) P#t-l
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where P is a polynomial and #(§ = exp($"/t | 4F). Sincef ' G(q,d), we have
Tp ' G(t,q), with
rdo
o) = (X7, B(!)= a!
i=1
Proposition 3.1.21 implies that T = 0 (since a > 1), for all polynomial P, and
Lemma 1.2.2givesf =0. O

|2

Remark 3.2.5 . B The condition given in Theorem 3.2.4is not necessary in general,
unlessd = 1 or d = 2, see Theorem3.1.26 When one of the quadratic forms is the
Lorentz form, the necessary and sulcient condition will be given in Theorem 5.3.1

Corollary 3.2.6 . Blet qx) = ~ ,(ix3, with (; = 1, and (1) = ~ &, !
with ,; = 0. If there exists i such that|, ;| > |,j| forall j = i, and |, ;| > 1. Then
G(q,d) = {0}.

3.3. Annihilating pairs for functions

The spaceG(q,d), with g(x) = ¢'(x) = 2axi1X» on R? (a > 1), is a singular case,
as shown by Theorem3.1.26 It does not contain any Gaussian function, but still
contains a non zero element. We will show here in particular that it does not contain
any function. Note that this is a consequence of Theorenb.3.2

Definition 3.3.1 . D Let F (q,d) be the space of distributionsd ' S'(RY) such that
f(dexp"q(d) ' L(RY), f(§exp(x"q'(d) ' S'(RY).

This is made of integrable functions, so that the Fourier transform is taken in the
usual sense. We can prove the following.

Theorem 3.3.2 . B Let g(x) = ,Ax,x- and ¢'(!) = ,A'l,1 -, where A and A' are
two symmetric, invertible matrices. Assume thatAA' is diagonalizable overR. Then
F (g,d) = {0} if only if AA' has an eigenvalug such that|, |! 1.

For the proof, we do as usual a change of variable so thatj and g are given by
(3.14). We will show that F (q,d) = {0} if if only if max;|,;|! 1. We will use the
following estimate, which is fundamental for the remaining of the text. It is a limiting
case of the estimates of Propositior2.2.2

Lemma 3.3.3. D Let d;,d> ' N such thatd = d; + d,. For x ' RY, we write x =
(X1,X2), X1 ' R9, x, ' RY%. Let q be the quadratic formqg(x) = |x1|?> $ | x2|?. Let
N > 0. Then there existsC > 0 such that for all z' C¢,
$
sup(L+ x|+ [zDY exp $ " (Ix|* + |a(x)]) +2" X, Re(2)- $

X %Rd

|%2%
S Re(@)

N oy " 2%
%C(L+ [z))" exp | Re(z)| Re(z2)l + 5| ()| .
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Proof. B Assume brst thatg(x) ! 0. Then |x1| % [x2|. We have
@+ x|+ |z)" eX|0$$ (X1 + )l + 27, x, Re(2)- $ *5%(22)
%C(L+ |x+|+ |2V
"exp $ 2 |X1I2+2 IX1|(] Re(z1)| + I%@(Zz)l)$ 936(22) ”
%C(L+ |z)" exp f(lﬁ’e(zl)l+ | Re(z2))* $ %(22)
= C(L+ |z)" expss"lfﬂ(zl)ll Re(22)| + IEIJM(Z)IQ :
The same estimate holds forg(x) % 0 by symmetry. O

Corollary 3.3.4 . B We keep the notations of Lemma3.3.3. Let f ' S'(RY). Then
f(§exp(x"q(d) ' S'(RY) if and only of there existC,N > 0 such that for allz' c¢,

1B )(2)| % C(L+ |z)" eXp " | Re(za) || Re(z2)] + *IJ/%(Z)IZ

Recall that the Bargmann transform is debned by (.3). Compare this with
Lemma 3.1.13

Proof. B Let - be a smooth, compactly supported function onR such that - (t) = 1
for [t| %1, and - (t) =0 for |t|! 2. Let
n 2 n ! 2%
*(z,x)=exp $"I|X[+2",x,2-$ 52

We have B(f )(z) = f, (- 2g)*(z,§-+ ,f, (1 $ - 209)*(z,9-.

Sincef ' S'(RY), we can PndC,M > 0 such that

|,f,* - % CPwm (*)

for all Schwartz function *. The semi-norm Py, was debned by {.7). Hence

Lf, (- 20)*(2,9-1 % CPu ((- 29)*(z,9)

%C sup (1+ |x|+ [z])®™ exp($" |x|?+2",%, Re(z)-$ %5@(22))
[a(x)[$ 2

%C sup(L+ |x| + [z])®™ exp($" (x| + [a(x)]) +2" X, Re(2)- $ %%(Zz))
X %R

$ " %
%C(L+ |z))*M exp ™| Re(z1)|| Re(z2)| + EIJ/%(Z)I2 :

We used Lemmag3.3.3for the last inequality.
Now we use the fact thatf (§- 2q(dexp("[9(8]) ' S'(RY). There exist C,N > 0
such that for all z' C¢,

Lf, (1% - 20)*(2,9-| % CPy (1 $ - 20q)e” 1981 (7 3)
%C sup(l+ |x|]+ |z|)2'\’I exp@ " (x|? + [a(x)]) +2" %, Re(z)-$ = g&e(zz))
X %Rd

HC(L+ (2D exp ™ | Re(zs)l| Relza)| + 3| (D)
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using Lemma3.3.3 again.
Conversely, assume that

N oy " 2%
|BEND) % C(L+ [z)" exp ™ | Re(z)|| Re(z2)| + 5| In(2)]

forall z' CY. Put F(z) = B(f)(z), and consider the entire function

( . H $ 2 2 2 2%
G(2) = F( 2z,,iy)exp E21515 Ey $"(y$ )+ Ez2 dy.
Rd"

It |5 the Bargrgann transfgrm, with respect to the variable y, of the function
F( 2z;,iy)exp %zf $ %yz . The integral is absolutely convergent and we have

$ %
G %C(+ 12D exp 5zl

By Proposition 1.2.5 there exists a tempered distribution g ' S'(RY) whose
Bargmann transform is G. Let &, denote the Fourier transform with respect to R%.
It follows by identibcation of the Bargmann transforms that

(F29)(" 2x1,%2) = f (x)exp(" (Ix1* $|x2/%)),

and we conclude thatf exp("q) ' S'(RY). We can as well prove thatf exp($"q) '
S'(RY), and the proof is complete. O

We are now in position to prove Theorem3.3.2

Proof of Theorem 3.3.2. B If max; |, i| < 1, chooset such that max; |,i| <t < 1
Then the Gaussian function# (x) = exp($"/t |x|?) belongs toF (q,d).

Assume now that, =max; |, ;|! 1. We brst divide g by a constant, ! 1 so that
max; |, i| = 1. Then we separate the, ; such that |, j| < 1, and tensorize with Hermite

functions as in the proof of Theorem3.2.4 So we will assume that all the, ; are equal
to 1 or $1. Up to a permutation of the variables, we can decompose the spade? as
RI=RE" RIz" RIE" R with dy + 4ad d4 = d, so that
qx) = xal® + [x2l* $xal* $ | xal?, o (1) = |11 S| 1al* + '3 $| L4l
We apply Corollary 3.3.4and bndC,N > 0 such that for all z' C¢,
$ " %
(3.15) BN %CL+ |z exp " | In(z1, z3)|| Hn(z2, 2)| + EI%(Z)I2 :

If we use the hypothesis onf we have

|B(f)(2)] % N If ()l exp(* [a(x))K (x, ) dx,
where $ , " L%
K(x,z)=exp $"(x]*+ |ax)])+2",%, Re(z)-$ Eﬂé@(z ).
Using Lemma3.3.3we have

$
K (x,2)| % C exp " | Re(z1,23)|| Re(z2,24)| +

' j 2%
Sl @),
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and hence s
(3.16) |B(f)(2)| % Cexp " | Re(z1, 22)|| Re(z3, 24)| +

" 2%
Sl (@)l
Put F(z) = B(f)(z). We bx z, real, zz imaginary, and z, = 0. Apply Lemma 1.1.8
to F(z) as a function ofz; * C9. Estimates (3.15 and (3.16) imply that F(z) is
constant, as a function ofz;. Then notice that when z; is real, we have

K(x,z)%C, lim K(x,z)=0.
Zl*"
Lebesgue®s Dominated Convergence Theorem implies that
lim F(z)=0,
zp*"

and henceF (z) =0.

We can prove in a similar way that, given any partial di"erential operator D of
ordern ' N, DF (z) is a polynomial in z;, of degree at mostn $ 1, provided that
z4 =0, z3 is imaginary and z; real.

We apply thisto D = ' }4, given any ng ' N%. Then 2 74F(2) = 0 provided
[n1] '] ng4l. If we take extra derivatives in z;, z3, and put z = 0, we obtain

"TF(O)=0
for all n' NY such that [ny| ! | ng|. By symmetry, this is also true when |n1| % |n4],

and hence all derivatives ofF at 0 are equal toO. It follows that F andf are identically
zero. 0

3.3.1. Other subspaces of F (q,d). ® We show in this paragraph that we can
extend Theorem 3.3.2to another class of functions.

We will consider quadratic forms debned by

(3.17) W)= A dO= A
with (i, 1 '{$ 1,+1}.

Theorem 3.3.5 . P Let q,d be debned by3.17). There exists an integerN ! 1 such
that every tempered distributionf satisfying

(L+ [x)*NV2f (Jexp(x"q(d) ' L*(R?), f(dexp(x"a'(9) " S'(RY)
is identically zero.
Proof. B As in the proof of Theorem 3.3.2, write

a(x) = [x1l® + [X2l* $ | X3l $ | xal® g (1) = 12> $ [ 12*+ |15 $| L4l

according to the decompositionR? = R% " Rd%" Rds" Rd |et F be the Bargmann
transform of f. We can as well prove that for any partial di"erential operator D of
order n, DF (z) is a polynomial in z;, as soon ag4 =0, z3 is imaginary and z, real.
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Let D = ' 4. By analyticity, DF (z) it is still a polynomial in z; when z,,z3 are
arbitrary, and z, = 0. Let ) be its degree inz;. We will show that

(3.18) )<N + |n4|$ ds.
Fix now z4 = 0, and z,, zz imaginary. We also takez, of the form z; = il ¢, ;' R%,
There exists a polynomialQ of degree|n,| such that
*
" 2, " 2 ny 2
£ €I = QUxg)et R,
. $. % . % .
The quantity exp 5($!2+ z5+ z3) ' D 2.=0 F(2) is equal to

f(X)Q(xa)exp($"x T +2i"x 111$ " (X2$ 22)°$ " (X3 $ 23)* $ "x 7) dx.
Rd
Tall'<ing the inverse Fourier transform in !¢, we bnd
Q(Xxz)exp($" (x2$ 22)°$ " (X3 $ 23)? $ "x 7)f (X) dxz dxzdxs = P(x1)e* ™ i

where P is a polynomial of degree) , depending on the bxedz,, z;. In order to show
(3.18), we prove that "
|P (x1)]dXy

— < &.
raz (14 [xg|)N*Inal
Indeed,
" p ! f " (X2# X2# x2# x2)
POOIK oo Qe XD ax
roz (14 [xg[)N*Inal R (L+ [xq[)N+Inal

When x2 ! 1(x3 + x2), we have

" (X3# x3# x2# x2) " ny 2
QUa)le e EPCA00 S 2D

(1 + [xgIN*Inel (L+ xa| + |xs] + [xa])N

o exp(" [qx)])
@ N

An if x2 % 1(x3 + x2), we have

|Q(xa)|e" XiFXE#X5EXD) _exp($"/ 3(x3 + x§ + X3))
@+ Nl 7 L+ [x [N+ Inal

0 o ~ EXP(" 1a(x)1)
% C(L+ [x|)*N 6 C = N

Hence we have

POy o
R

raz (14 [xg[)N*Inel

and (3.18 follows. Thus

[f (x)|e" 190 dx -
o (1+ XN '

'TE(0)=0
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for any n' N9 such that [ng] ! N + |n4| $ di. By symmetry, this is true whenever
one of the following conditions is satisbed:
|n1| I N$d + |n4|, |n4| I N$ds+ |n1|
|n2| I N$d,+ |n3|, |n3| ! N$ d3+ |n2|.
Take for N the integer part of
0 1
di+dg+1 dy+d3+1
(3.20) max — 4~ 273 .
2 2
We claim that for any n' NY, one of the conditions @.19 is satisbed. Indeed, if this
is not the case, we have
2%2N $ (dp + dg), 2% 2N $ (d3 + da),

which is a contradiction. Since all the partial derivatives of F at 0 vanish, we have
f=0. O

(3.19)

Remark 3.3.6 . B A possible value ofN is given by (3.20). Note that we have indeed
N ! 1. Assume that q = ¢. Then N is the smallest integer such thatN ! d/2.
Theorem 3.3.5is sharp whenq = ¢, d = 2k, and g has signature (k,k) on R,
Indeed, the standard Gaussian function satisbes

L+ IxI+ yD*Nf O y)exp" (X2 $1y1%) * LYR™)

wheneverN > k. This value is also optimal form a form of signature (k + 1,k) or
(k,k + 1) on R%*1 We think that, in the general case, the sharpest constant is
N = max(k,l), where (k,1) is the signature of g, since a Gaussian function satispes
the conditions if and only if N > max(k,I).

Corollary 3.3.7 . DLletf' S'(R?). Assume that
$ % $ %
f(x,y)= O exp(®2a"|xy|) , #(1,$)= O exp($20"|!$]) .
If ab>1, thenf =0.

Proof. B We can assume thata> 1 and b=1. Hence
f,$)exp@x2"1$)" L

and
If (. y)lexp2' xyl) dy %C exp$ 2’ (@$ 1xyl) | dy
1+ x|+ 1yl W ow L IX[H Y
%C exp($2' (a$ 1)[xyl) dy dx
WXUR|yI8] x| 1+ x|
(3.21) %C dx

xor (1+ [x])?

The value given by (3.20 is N =1, we can use TheorenB.3.5 and we bndf =0. O
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Remark 3.3.8 . b Corollary 3.3.7is an analogue of HardyOs uncertainty principle for
the non degenerate quadratic form2xy, which is the one appearing in BeurlingOs
uncertainty principle. The condition is sharp, since the standard Gaussian function
satisbes the hypotheses whea= b=1.

We give the following corollary concerning annihilating pairs of sets.

Corollary 3.3.9 . B We take the notations of Theorem3.3.5. Let 1 % p,q % &,

such thatp?! + ¢! = 1. Assume thatq > %2 that f ' LP(RY) is supported in

{x;|q(x)] % C}, and that f is supported in{!;|q'(!)] % C'}, where C and C' are two
bxed constants. Thenf =0.

Proof. B Recall that for any t ! 0, the function equal to (1 + |x|)** when|qg(x)] % C,
and to 0 when |g(x)| > C, is in the spaceL(RY) if and only if t >d $ 2. Sincef is
supported in {x; [q(x)| % C},

" . § 4 S 1
| (X)l exp( |3(X)|) dx % C#f #LP (1 + le)# Ng < &.
re (1 x]) la(x)1$ C
Since moreoverf exp(+"q') ' S'(RY), Theorem 3.3.5givesf =0. O

Remark 3.3.10 . B If d =2, Corollary 3.3.9 applies for any values ofp, evenp= & .
When d = 3, it applies for 1%p< & .
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CHAPTER 4

CRITICAL PAIRS

We study in this chapter the elements ofG(q, d) when the pair is critical. We give
necessary and sulcient condition on their Bargmann transform, and we state three
conjectures on the form of the elements of5(q, d).

4.1. Introduction

Take the two quadratic forms debned by
a(x) =, Ax,x-, (1) = AL,

where A, A' are symmetric invertible matrices. We will assume throughout in this
chapter that the pair (q,d) is critical, which means that AA' is diagonalizable over
C, with eigenvalues of modulusl. We can always make a change of variables so that
A and A' are orthogonal and symmetric matrices. Recall that the Gaussian functions
in the spaceG(q, d) are all real, and are characterized by Theoren8.1.11

We will use the Bargmann transform, introduced in the brst chapter. We will
show that it characterizes the elements ofG(q, d) by the growth of their Bargmann
transform.

We now introduce useful operators linked to the Bargmann transform. The anni-
hilation and creation operators from quantum mechanics (seed, 12]), are debned as
follows.

Definition 4.1.1 . D The creation operators are debned ors'(RY) by

1
4.1) zi(f )= xf $ > "y T
The annihilation operators are
(4.2) Z((f)= xf + 2{ '

The annihilation operators are the formal adjoints of the creation operators. The
creation operators commute, and the same is true for the annihilation operators.
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68 CHAPTER 4. CRITICAL PAIRS

Proposition 4.1.2 . D Forall f' S'(R% andz' CY, we have

(4.3) zB(F)(2) = B(zif)(2),

(4.4) L BE)2) = B T)(2).
Moreover

(4.5) ($2)Fzkgx) = e* 7 K [ * T g(x)],
(4.6) ($27)zlkg(x) = ™" K [e*Tg(x)],

forany g' S'(RY).

4.2. Characterization of  G(q,d)

Assume for simplicity that we have already made a change of variables, so thaA
and A' are orthogonal and symmetric. Let
E;=Ker(A$ 1), E; = Ker(A+1)
and
E;=Ker(A'$ 1), E, = Ker(A'+ 1)
be the eigenspaces associated # and A'. For x ' RY, let x; and x, the projections
of x on E; and E,, respectively. Let x; and x5 be the projections ofx on E; and E}.

For our analysis, we will use the fundamental estimate of Lemme3.3.3 and Corol-
lary 3.3.4 The following is an immediate consequence.

Theorem 4.2.1 . Plet f ' S'(RY. Then f ' G(q,d) if and only if there exist
C,N > 0 such that for all z' CY,

$ . %
“n) |B(f)(2)] % C(1L+ |z)N exp ™ | Re(za)|| Re(z2)] + EIJM(Z)I2
: , $ , Lo %
|B(f)(2)] % C(1+ z)N exp ™ | n(z)|| Fn(25)] + §|§€e(z)|2 :

So our initial problem has been translated into the characterization of a subspace
of the Fock space.

When A = A', we can give a more precise result. We can do a rotation in the
variables, so that

(4.8) q(x) = d(x) = [xa|* $ %2/,

with x = (X1,X2), X1 RY: and Xp ! Rd2 (d]_ +d, = d)

Theorem 4.2.2 . P Let g be a quadratic form given by(4.8). Let f ' S'(RY). Then
f ' G(q,9 if and only if there exist C,N > 0, such that for all z' CY,

(4.9) |BE)N2) % C(L+ [ZDN exp(" | Re(za)| Re(z2)| + " | (20| Sn(22)])
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Proof. D Fix z; ' R%, andz,' RY. Consider the analytic function G debned onC!
by
G(t) = B(f )(tz1, 1" 12,).

It follows from Theorem 4.2.1that there exist constants C, A, depending on the bxed
71,2, such that for all t* C(,

IG()] % C(L+ [t] + [tI* )N exp(A(| Re(t)|? + | Re(t” 1))
and
IG() % C(L+ [t| + [t )N exp(A(l Sn(t)? + | In(t" 1) [?)).
From Lemma 1.3.2 we conclude that
IG(t)] % C'(1+ [t] + [t[* HN
forall t' C(. HenceG is a polynomial in t and t**, and we can write

‘N
B(f )(tz1,t*12) = t“Fy(2),
k=#N

where Fy are entire functions on C9.
We will show that (4.9) holds for each of theFy, for some constantsC,N > 0. We
have
Fn(2) = ' &N B(F)(tz1, 1 1 25)

foranyt' C(, z' CY. Propositions 3.1.2 4.1.2and Theorem4.2.1imply that there
exist C,M > 0 such that for all z, .,t,

IFn ()] % C(L+ [2] + Jt] + [t H)M
$
"oexp | Re(zo)l| Re(z2)| +

' 2 2\ %
5z + | In(z2/t)[7) -
If we minimize this estimate overt, we bndC,M' > 0 such that for all z' CY,
! $ %

IFn (2 %C(L+ |2+ |. DM exp ™| Re(z1)[| Re(z2)| + " | In(za) || Hn(z2)| -

We obtain by induction similar estimates for all the Fy. O
When A and A' commute, we can make a change of variables so that

(4.10) ()= [xal®+ [x2l* $ 1 xal* S| xal?, A (1) = 1P $] Lol + |'5]* S Lal?,
with x;,!; ' R% anddy + 444 d;s = d.
Theorem 4.2.3 . P Let q,d be debned by4.10). Let f ' S'(RY). Then f ' G(q,d)
if and only if there exist C,N > 0 such that for allz' CY,

$ " %
|B(f)(2)] % C(L+ [z exp ™ | Re(z1, 22)|| Re(zs, 24)| + EIJM(Z)I2 ’
$ : %
|B(f)(2)| % C(L+ [z exp ™ | Jn(z1, 23) | Folz2, 24)| + EI%(Z)I2 :
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This is a reformulation of Theorem 4.2.1 When d; = 0, we have a more precise
version (which includes Theorem4.2.2). Here

a(X1,X2,X3) = [X1* + [X2* $1xal? ' (11,12,08) = [P $]12* + |1sf%.
Put
(X2, X3) = IX2|* $| x3|*.
It is a non degenerate quadratic forms onRY* 9 We will give a description of the
elements ofG(q, d) in terms of G(p, %p).

Theorem 4.2.4 . Dlet f ' S'(RY). Then f ' G(q,d) if and only if there exist
N * N, distributions fy ' G(qo,q))l, such that

f (X1,X2,X3) = xK exp($" [x1]?)f k (X2, X3).
KONT1 ;[k|$ N

Proof. B Such distributions belong clearly to G(q,d). Let f ' G(q,d), and F its

Bargmann transform. By Theorem 4.2.3 there exist C,N > Osuch thatforall z' CY,

N $ll ! 2%
IF(@)I%CL+ [z])" exp ™| Re(z1, 22)I| Re(za)| + 5| In(2)]

a.nd " %

IF(2)| % C(1+ |z)" exp$"lfm(21,23)llfﬂ@(22)| + §|5€a(z)|2
Fix zo' R% andz;' iR%. By Lemma 1.3.2 we see thatF (z1, z,, z3) is a polynomial
in z;. Hence '
F@=  z{Fu(z2),
[kI$ N
where the Fy are entire functions depending only onz,,z;. We can express each
function Fy(z2,z3) as a polynomial in' ;, applied to F(z1, 22, z3):

Fk(z2,23) = Pu(’ 2)F (0,22, 23).

It follows from Propositions 3.1.2 4.1.2and Theorem4.2.3that there exist C,N > 0,

such that for all (z5,23) ' CY%* 9%,

$ n %
IFk(z2,23)| % C(L+ |zo] + |zs])N exp | Re zo|| Re zs| + §|jm(22,23)|2

and
$ " %
IFk(z2,23)| % C(L+ |zo] + |zs])N exp " | In 25| Im z5| + EI%@(Zz,Zs)I2 :

Using Theorem4.2.3 again, we see thatFk = B(fx), with f ' G(mp, xp). Hence

B(f )(2) = 23 B(f )22, 23),
[k|$ N
which is equivalent to -
f(x)= ZX#(x1)f K (X2, X3),
[k|$ N
with #(x1) = exp($" [x1]?). This completes the proof. O
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4.3. Gaussian solutions revisited

Theorem 4.2.1 can be used to obtain the results of TheorenB8.1.11 Indeed, if
f(xX)=exp($" ,Mx,x-)
is an element ofG(q,d), where M is a symmetric complex matrix whose real part is

positive, then 0

B(f)(z) = det( | + M)*# 12 exp$%,C(M )z,z-/,o

where C(M) is the Cayley transform of M. The Gaussian elements are then charac-
terized by their Bargmann transforms, which has the form

$" N %
exp =,Nz,z-,
P2
where N is a real symmetric matrix such that
(4.12) $ 2x}[Ix5] % NX, X - % 2|x1]|x|
for all x ' RY. Recall that x4, X2, X}, x5, denote the di"erent orthogonal projections of
x on the eigenspaces of the matrice# and A'.

Definition 4.3.1 . D Call by B(q, d) the open convex set made of the symmetric ma-
trices N satisfying (4.12), and such thatl $ 'NN is positive.

When A and A' commute, N has a simple form. We can assume that
(4.13)  a(x) = xalP+ [x2l? $1xal? $1xal?, A1) = [11P S 112+ |'al* $ Lal?
as above.
Proposition 4.3.2 . B A matrix N belongs toB(q, d), with (q,d) given by (4.13, if

and only if there exists a real matrixv with d; lines and d; columns, a matrix w with
d> lines and d; columns, such that(l3 $ tvv and | $‘9ww are positive, and such that

0 0 0 v
N_40 0w o
0 'w 0 ©
tv. 0 0 0

This follows actually from the proof of Proposition 3.1.14 We could also give a
description of B(q, d) in the cases of Propositions3.1.15and 3.1.17, but we will not
use it.

The spacesG(q, d) are linear. Hence averages of solutions are still solutions. This
enables us to give non Gaussian elements &(q, d).

Definition 4.3.3 . D Let p be a Pnite measure orO(q) 1 0O(q'). Debne
(4.14) Gu(x) = exp($ " [9(x)|?) du(g)-
O(a)+0(d')
This belongs to G(q, d) by Theorem 3.1.11and Proposition 3.1.2
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Proposition 4.3.4 . B The function debned by(4.14) is a bounded continuous func-
tion. The Fourieg#transform of Gy is given byG ., where 1 is the symmetric measure
of y, debned by *(g)di(g)= *(‘g*!)du(g). We haveG, ' G(q,d).

We can build other elements ofG(q, d) using Proposition 3.1.2

Theorem 435 . DLet N ! 1, y,...,Un be Pnite measures orO(g) 1 O(q). Let
P1,...,Pn be polynomials inx and in the partial derivatives with respect tox. Then
the tempered distribution debPned by

"N
(4.15) f = Pe(X," x)G i

k=1
belongs toG(q, d).

Remark 4.3.6 . B Although G, is a continuous and well dePned function, the distri-
butions debned by @.15 are not functions in general.

When the quadratic forms we consider are not of Lorentz type, or not positive, we
have not been able to prove the converse of Theorem.3.5 and we state this as a
conjecture.

Conjecture 4.3.7 . D Let q(x) = ,Ax,x-, d(!)= ,A'l,! -, where A,A" are orthogo-
nal and symmetric. Any element ofG(q, d) can be written in the form (4.15).

In the next chapter we will show that this is true for the Lorentz quadratic form.
Now this can be stated in a simpler way whenG(q, d) contains only one Gaussian
element (see TheorenB.1.18.

Conjecture 4.3.8 . D Let (q,d) be a critical pair satisfying the hypotheses of The-
orem 3.1.18. Let # be its unique Gaussian element. Anyf ' G(q,d) is a Hermite
function of the form
f(x) = P(X)#(x),
where P is a polynomial.
As mentioned earlier, we can takeg(x,y) = x>$ y? and ' (!,$) = 2!$ on R? as an
example. In this case, Conjecture4.3.8 becomes:
Conjecture 4.3.9 . D LlLeF bean entésre function on C? satisfying th/e estimates
IF(2)| % C(L+ [z))" exp 2| Re(z1)|| Re(z2)| + | In(2)I?

and o

N $ 2 2 2 Yo
[F(2)| % CAL+ z)" exp [(Inz1)"$ (Inz2)| + | Re(2)| .
Then F a polynomial.
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LORENTZ QUADRATIC FORM

This chapter is devoted to the proof of Conjecture4.3.7 in some cases. The main
result is the description of G(q,d) when q is the Lorentz form debned onR%*! by

ax,y) = x2+ aa# x3$ y?,

wherex = (x1,...,Xg) " R¥andy' R, and whend is any quadratic form debned
by
q(L$)= (u!f+aas (a'f+ (3%

where! ' R9@and$' Rand(,(; = =1

We brst prove Conjecture4.3.7 when g and ¢ are equal to the Lorentz form. In
this case the elements of3(q, d) have very interesting properties. We show that they
are smooth inside the Lorentz cone, while they can be singular outside. We point
out examples that vanish inside the Lorentz cone, as well as their Fourier transforms,
without vanishing identically. As a corollary we obtain the main result mentioned
above. We will complete Theorem3.2.4 and give the exact conditions ong and g so
that G(q,d) = {0}, when q is the Lorentz form and ¢ has only diagonal terms.

5.1. The Bargmann transform of G(q,9

Theorem 4.2.2 characterizes the Bargmann transform of the elements of5(q, 9.
In this section we will describe this space, which is the space of entire functions on
CY*1 | for which there exist C,N > 0, such that for all (z,.)"' CY4" C,

(5.1)  IF(Z )I%C@+ |z + |- D" exp("| Re(2)|] Re(. )| + " | Fn(2)|| Il )]).

Recall that in the whole chapter, the letters C and N denote constants that may vary
from line to line.

Lemma 5.1.1. B Let F be an entire function satisfying (5.1). There exists a decom-
position F = ° E‘:#N Fi, with entire functions Fy satisfying the estimate

(5.2) IFi(z, ) % CL+ |z + |. DY exp(" | Re(.2)]),
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and the homogeneity condition
(5.3) Fe(tz,t* 1) = tXFe(z,.), (t* CL, $N %k %N).

Proof. ® We proceed as in the proof of Theorem4.2.2 We showed that there exist
entire functions F, on C%* such that

"N

B(f)(tz, t* 1) = t“Fu(z,.).

k=#N

Each of the Fy satisbes 5.1).
Relations (5.3) are obtained by taking partial derivatives at t = 0. We prove now
(5.2). Because of b.3), taking t = .#1,
F(z,.)= . #*F(.z, 1).

Using (5.1), we bndM, C > 0 such that for all z, .,

IFk(z, ) %CL FX@+ |z] + |. )M &I #l21,

This gives (5.2) for k %0, and for |.| !'| z|** whenk > 0. If k > O and |. [|z| % 1,
write

(5.4) IFu(z, )1 = 1zIIFi(I2I* *2, |2]. )] % Clz|*

and (5.2) is proved. O

Let B be the open unit ball of RY, and B its closure. Let S!ET be the space of
distributions on RY supported by B.

Theorem 5.1.2 . D Let F be an entire function onCY. Then it satisbPes (5.1) for some
C and N, if and only if there exist M ! O, distributions ; ' %, and polynomials
P;, such thatforallz' C%and."' C,

™M
(5.5) F(z,.)= Pi(z,.) exp(",v,.z-)dy(v).

i=1

Proof. B Use the decomposition ofF as in Lemma5.1.1 Since

IFk(z, )] % C(L+ [z])" exp("| Re(2)]),
we can apply Paley-Wiener-Schwartz Theorem. Hencé(41) is the Laplace trans-
form of a distribution 1 ' S:?. It follows that

Fe(z,.)= %% exp(",v,.z-) dl(v).
When k > 0, all the moments of 1 of order up to k $ 1 vanish, sinceFy is an entire
function. It follows that for k > 0, 1 can be written as

— " #
1k - vlk,#!
|#]=k
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where 1y » S!ET. Integrations by parts give then (5.5). Conversely, any entire function
debned by 6.5) satisbes b.1) for some constantsC and N . O

5.1.1. Description of G(qg,09. B We now describe the spacé&(q, g itself.

Definition 5.1.3 . B We debne fork ! 0 the injective operator Ty () from S’E into
S'(RY) by

BTe(W)(z,.)= .5 exp(",v,.z-) du(v).

This can also be done fok < 0. Debne byS‘Ek be the space of distributions onR¢
supported by B, that vanish on all polynomials of degree less thatk]|.

Definition 5.1.4 . B Let k < 0. Debne the injective operator Ty from S!Ek to
S!(Rd+l) by .

BTe(W) = . exp(",v,.z-) du(v).

These operators are well debned by Propositioi.2.5 Indeed, in each case, the
expression "

K e@vzodp(v)

debPnes an element oF . Theorems5.1.2and 4.2.2 give actually the following.

Proposition 5.1.5 . DIf k! 0, T« mapsS; into G(q,9. If k< 0, it maps S;, into
G(0.9.

Theorem 5.1.6 . B Any element of G(q, 0 can be written as a Pnite sum
f = Pk(xyy'llXaly)Guk!
k

where Py are polynomials, and are Pnite measures on the Lorentz grou(d, 1).

The functions G, were debned in DePnition4.3.3 We will use the following fact
on the structure of the elements ofs’g:

Lemma 5.1.7. B Every p ' S!E can be decomposed as a bnite sum of derivatives of
Pnite measuresyy supported byB, that satisfy

|dpe (V)]

(56) 5 LS| v)V?2

< &.
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Proof. B It is a standard fact that every distribution on the ball may be written as a

Pnite sum of partial derivatives of finite measures on the closed ball (se4], chapter
[11). Hence it is sulcient to decompose a finite measure as in the statement of the
lemma.

To do so, we choose local coordinates insid®, around a point vo. When the point
is inside the ball, the measure(1 $ | v|?)# Y2 du(v) is clearly finite in a neighborhood
of vp. So we have only to consider the casp/g| = 1. Changing coordinates, we have
to show that any finite measure du(t) supported by [0, 1] is a sum of derivatives of

measuresdl(t) supported by [0, 1]¢ such that tf vz di(t) is finitg. Write

t1

*(t) du(t) = o1 *(1/2,t') + 1/2'51*(sl,t!)dsl du(ty, th

= *dug+ 'Sl*(Sl,S!)dl(S),

where the measuredy; is supported by the set{t; = 1/2}1 [0, 1]%, and thus satisbes
the required conclusion, and the measurell satisbes by definition

n n ' *

t1
*
EV2d101% xStV ZdsEdu(ts, )
[0,1]d " [0,1]d 1/ 2
(_ <__
% 2( tp+ Y 2)|du(t)| %4y < &,
[0,1]¢
from which we conclude for the lemma. O

Proof of Theorem 5.1.6. B Theorems5.1.2 and 4.2.2imply that any f ' G(qg,0 can
be written as a Pnite sum .
f= T (Hk),
k

where g ' %. Hence it sulces to prove that each Tx (i) can be put in this form,
given any p' S..

Debne the Gaussian function#,, for v' B, so that B(#,)(z,.) is proportional to
exp(",v,.z-). By Proposition 4.3.2 every Gaussian element of5(q, g is equal to #,,
for somev. A simple computation shows that
0,

$ 2 4 4 2 2 %
(5.7) #wy)=exp $"(G+aaaxis y + = (y$, v.x)?),

1$|v|
and that
BNz, = SASIVP) 2 exp(’ v, .2-).

For any Pnite measurel on B, debne

Gu(xy)= B#v(x.y)dl(V)-
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There exists at least one bnite measur& on O(d, 1) such that G, = G.. We have

B(G.)(z,.) = % . exp(",v,.z-)(1 $|v|?)Y2d1(v).

Letk! OQand p' SI!?. By Lemma 5.1.7, there exists a decomposition

1

$ %
=5 GUTIAs|VAYILW)

#

u

where eachly is a Pnite measure orB. If we use the creation and annihilation operators
of Debnition 4.1.1, we have
1" <
BTNz, )= 5 " FLKC2)* B(To( 1$]VPL))(z,.)

o 0 1

= "|#|Q§ !k(!Z)#G:+k (Z,.),
#

from which it follows that
(5.8) T = Pkt e,,.
#
This gives the result in this case.
Assume now thatk < 0. Herep' S.L., , hence there exists a decomposition

Bk’
M= " Bk

[#1=1k|

with ey S‘E. It follows that
BT (W)(2,.) = ($"2)" B(To(Msk ).

[#]=1k|
and henceTy(p) = = 1k (B 2)# To(Mxk ). By the previous case, Ty (l) has also the
required form. O

5.1.2. Properties of the elements of G(q,9. B When d = 1, the description of
G(q, 9 is simpler. After a rotation, we can assume that

ax.y) = d(xy)=2xy,

with (x,y) "' R2. Then the group SO(q) is made of the matrices of the form
4 5
3 0

g = 0 3#1 !

where3' R(. Putting t = 32, we have:
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Theorem 5.1.8 . B Letf ' S'(R?).Thenf ' G(q,9 if and only if there existN > 0,
Pnite measuresp, on R{ and polynomials P, such that

N "
fy)= Py, x,'y)  exp@"tx 2$ "ty ?) du(t).
k=1 R
A particular example was mentioned in the introduction. It is the function given
by f (x,y) = sgn(x)exp($ 2" [xy[). We actually have

(5.9) f(x,y)= xe? "W H Ty #H U2 g
0

see Formula 6.14) below. It is not of the required form, because the measuré¢” /2 dt
is not Pnite. But cutting the integral at t =1, we write:
1, ) g "X P# TP #3112 gt
2" X 1 .

Another example is the distribution f (x,y) = &Xx)1(y), see Theorem3.1.26 We
can also put it in that form using integrations by parts.

We now give properties of the elements 0fG(q, g, when q is the Lorentz form
on R4+,

1
fxy)= x "> # Y #l2qgig
0

Theorem 5.1.9 . P let f ' G(qg,9. Then f is a real-analytic function when y? >
|x|?. Moreover, there existC,M, m ! 0 such that for all (x,y) with y? > |x|?,
* *

IF (%, y)] % CL+ |x]| + [yDV x> $ y2** M et " IxI*# 71
If d=1, this is true for any (x,y) such thatx? = y?2.

Remark 5.1.10 . B Even though the conditions on the elements of G(q, g are given
in a distribution sense,f satisbes in the Lorentz cone a pointwise estimate analogous
to HardyOs uncertainty principle.

Proof. B When taking formally derivatives of G with respect to x and y under the
integral, a singularity at |v| =1 appears. It is of the form (1 $|v|?)* ™, with m ! 0.
We will prove that the integral is still absolutely convergent provided |y| > |x|. Note
that we have the estimate

N 2" (y"$ vx %2
(510)  (@$|vR)Fme" T IR TENET ey (lyl $| x) 2
forall v' B. The real part of
1
2 24 RY:
IX|“$ y 1$|v|2(y$’ V, X-)

is non negative, whenever(x,y) is in a complex neighborhood of some poin{xg, Yo)
such that |yo|? > |xo|?. We conclude with LebesgueOs Theorem th&, is real analytic
for y? > |x|?. So isf by Theorem 5.1.6 O

The following is a corollary of this proof.
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Corollary 5.1.11 . Dlet p' SéT, and k ! 0. Then for any (x,y) such thaty? >
x|, we have "

T y)=2 TR y)E $ v Y2 du(v).
Here! is the creation operator associated to the variabley.

Proof. B Note that this makes sense since the function
P (G y)(L S VPPV 2,

extended by O for |v| ! 1, is smooth and compactly supported byB, as soon as
y? > |x|2. We can decomposgu as a bnite sum

1 R %
w=s @D ASIV) Pe(v)

#
where eachpy is a Pnite measure onB. We have B(#,)(z,.) = 3(1$|v>)¥?
exp(",v,.z-). Put f, = 2(1$|v|?)" 2#,. Forany ) , we have also}(1$| v|?)V/ 2 ¥f, =
("' z)*#,. Indeed, the Bargmann transform of both functions coincide. It follows that

BTe(W)(z,.)= .5 exp(",v,.z-) du(v)

%
“ ' 3$exp(" V,.z-) (LS V)Y 2 dye (v)

B 12)* Gy, )z, ).

#

Hence Ty(p) = = ,!¥("12)*Gy,. In the proof of Theorem 5.1.9 we showed that
we can compute the derivatives under the integral debnings,,, , provided y? > |x|?.
Hence

Tk(W) = B! ("1 2)* # dpg (V)

#

AS IV {E die ()
B

II#
! ka dH(V)y
B

as required. O

Recall that Theorem 5.1.6 establishes that anyf ' G(q,9 can be decomposed as
a Pnite sum '
f= Te(),
k
where py ' S!ET for k! O, and py ' %k when k < 0. The following lemma, that we
will use later, proves that this decomposition is unique.
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Lemma 5.1.12. B Write

f= Ti (M)
k=#N
For any k, Ty+n (k) can be expressed as a polynomial in the annihilation and creation
operators, applied tof .

Proof. B Using Proposition 4.1.2, we obtain

N 2N
INF = T+ n (Mk) = Tk (Hk# N )-
k=#N k=0

Taking the Bargmann Transforms, we bnd that for any a > 0,

12N
BNf) @tz a)= AK€V dpsn (V).
k=0

We conclude by taking derivatives ata =1, and induction on k. O

5.2. Vanishing elements of G(q, 0

In this section, q is still the Lorentz form on R%?1. We want to show that the
elements of G(q, g cannot vanish on large sets. LetC be the light cone, debPned by
C = {q=0}. The Lorentz cone is{(x,y); y? > |x|%}.

By Theorem 5.1.9, all distributions vanishing in an open subset of the Lorentz cone

vanishes in one connected component of it. We will brst exhibit non trivial elements
of G(q, 9 that vanish for y? > |x|?, and characterize them.

5.2.1. Examples of vanishing solutions. B For / in the unit sphere Sy 1 of RY,
let

(7 " 242
Ee(x,y)= 26" (XY0&_ e

It is a measure debned by,Eg,*- = = 2 , € "I** x&-&%% (x  x [ -)dx. The support
of Eg is exactly the hyperplane Hg of equationy = ,x,/ -, which is tangent to the
light cone C, and contained in the complementary of the Lorentz cone. Wherd =1,
its support is the line y = /x, / '{* 1}, which is on the light cone. AlsoEg = Ey .
In fact Eg can be seen as the weak limit ag * 1 of f,g debPned in the proof of
Corollary 5.1.11 Hence its Bargmann Transform is

(5.11) B(Ee)(z,.)= e &7,

From this expression we see thaEg = To(&), SO it is a particular element of G(q, 9,
vanishing on the Lorentz cone, as well as its Fourier transform.
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The aim of this section is to prove that every element ofG(q, g vanishing in one
connected component the Lorentz cone arises as a (continuous) linear combination of
the Eg:

ko
(5.12) Pc(X,¥," x," y)Em,

k=1
where Py are polynomials, my distributions on Sy ;. Here, if m is a distribution on
Su# 1, Em is dePned by

Em,*-= *(x, %,/ -)e" " KT x&E gy dm(/),
Sd" 1 Rd
which will be formally denoted by
Em = Ee(x,y) dm(/).
Suv 1
In particular, if a solution vanishes in one component ofC. , it vanishes in the whole

coneC, , as well as its Fourier Transform. The idea of the proof is to show that any
Mk arising in the decomposition

f= Te()
K

is supported by the unit sphere Sy 1 instead of B.
5.2.2. Characterization of vanishing solutions. b We debne for|v| < 1 the
function *(x,y):
w (¥Y"$ vx %2
“xy)= €T T s v,

Note that v * *,(x,y), extended by O when |v|] ! 1, is a smooth function with
support equal to B, as long asl|y| > |x|, since then(y $, v,x-)?! (ly|$|x|)?.
We Prst begin with a proposition of independent interest.

Proposition 5.2.1 . Dbletpu’ S!g, and k! 0. Assume that

(5.13) T(W)(x,y) =0
for any y > |x|. Then the distribution p is supported by the unit sphereSy ;.
Proof. B First consider the casek = 0. By assumption,

" (y's v
A8V V2e" T du(v) = 0

for all y > |x| (see Lemmab.1.17). We want brst to replace the integrated term

2" (y'$ vx %2 ) # (V'8 vx % . . .
g e by the more suitablee” @' vi»*?  We will use a classical formula, which
is linked to the principle of subordination ([26], p46):

(514) e#l " = é e# Ue# %u# 1/ 2 du

0
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We will show that

"
Wy vx %

(5.15) e TP LS|V Y2dp(v) =0

for all y > |x], which makes sense since we test the distributiop on a smooth function
in v, as long asy > |x|.

Put O(x,y,V) = %. We remark that the double integral

u XY,V 2
@$|v)#N f%e# S5 dudi(v)

is absolutely convergent wheneveN ! 0, y > |x|, and for any finite measure d1.
Hence a direct use of FubiniOs Theorem yield§.05 when p is a measure. Otherwise
we write u as a finite sum of derivatives of finite measures supported by (see p4],
chapter Ill), integrate by parts, and exchange derivatives and integration in v, and
still obtain ( 5.15).

Now we take derivatives with respect tox in (5.15), and let x = 0. For any poly-

nomial P on RY,
n - >
\Y 2\" 1/ 2
5.16 P — Y@V T g 2#V24qu(v)=0.
(5.16) ILE: (@8] V)" Y2 du)
To conclude it is sulcient to show that (1 $|v|?)Ndp(v) = 0, for N big enough,
depending on the order of the distribution p. By density of the polynomials, it is

sulcient to show that N

(5.17) QW $|vIH" du(v) =0

for any homogeneous polynomialQ and N big enough, but bxed. We want to deduce
(5.17) from (5.16), with P dgbned by

_ vV QW
1$|vZ  @$|vP?’

and k = deg(Q)."\Ne use the fact that

(5.18) g YA VI YN TGy = c1 g RN T 12,
0
We remark that the double integral
< k .
Q)| TSV ey v Nk gy )

is absolutely convergent for anyN, N such that N ! Ng, and any finite measurel.

Hence, whenp is a finite measure, the exchange of integrations iny and v is a
consequence of FubiniOs Theorem, taking = 1 for example, and we get 6.17). For
a general distribution, we write i as a sum of derivatives of order up toN of finite
measuresdl of S.. We conclude that (1 $ | v|*)™ dp(v) = 0, for any N ! No, which
proves that du is supported by Sqx 1.

MfMOIRES DE LA SMF 119



5.2. VANISHING ELEMENTS OF G(q,q) 83

Consider now the casek > 0. By Proposition 4.1.2, we have

B(To( W) =($"2 )" e du(v)

=(8z 1)kg3(Tk(u))((y02, 2
= B (8" 20)* k(W) (z,.).

Since T (M)(x,y) = 0 for y > |x|, the same is true for ($" z1)XTk(M). Hence
To(" & W))(x,y) =0 fory > |x|. By the previous case, & p =0 in B. This is actually
true for any derivative in v of order k, and we conclude thaty is given by a polynomial

inside the ball.

We are thus lead to prove that if du(v) = P(v) dv, where P is a polynomial, and
if Tx(y) vanishes fory > |x|, then P = 0. But if this is the case, we have, using
Lemma5.1.11, and Formula (4.5), for all y > |x|,

" 5

2\# 1/ 21 k T ogon 28 vx %2
@s|vH =y e vz P(v)dv=0.

We conclude as before, using RelationH.14), that

Wy'$ VX %
"l

(1$|V|2)#(k+1)/2e# vIZ P(V) dv=0.

Then we take derivatives inx, let x =0, use (6.18), and bnd Pnally that (5.17) holds
for du(v) = P(v)dv. HenceP =0. O

Theorem 5.2.2 . b Suppose thatf ' G(qg,9 vanishes on an open subset of the
Lorentz cone. Then it is can be written as(5.12).

Proof. B By real analyticity of the solutions (see Theorem 5.1.9), f vanishes is a
connected component ofC, , for example in the set{y > |x|}. We know that f can
be put in the form

ko

f= T (Mk)-
k:#ko

We want to show that every p is a distribution supported by the unit sphere Sy 1.
By Lemma 5.1.12 there exist polynomials P, such that

Ths ko (Hk) = Pi(z, 20,1, 1 OF.

Hence T+, (Mk) vanishes on the cone, and by Propositiorb.2.1, we obtain that py
is supported by Syz 1. The structure of distributions supported by Syz1 is known
(see 4], chapter I11). It follows that B(f ) has the form

B(f)Nz,.)= .k e"?& dmyy (/)
#K Si 1
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where eachmyy is a distribution debned on the sphere. But this is the Bargmann
Transform of

(5.19) Z1%Enm,, ,

#,k
hencef is equal to (5.19. O
5.2.3. Weak uncertainty principles for Lorentz form. Let us consider more

precisely the cased = 1. The unit sphere is reduced to{$ 1, 1}. All the distributions
of the form E, are in this case combinations of&-x and &-xx. We do a rotation
in the variables so that we consider the form2xy instead ofy?> $ x2. The following is
true.

Theorem 5.2.3 . BDLetf ' G(q,9. If f vanishes on an open set, then it is a Pnite
linear combination of the distributions

x<) &(y), &) ¥

Proof. B It is easy to see that these distributions are those of type %.12). We can
assume, since the four quadrants are equivalent, that vanishes in a subset of x >
0, y > 0}. We conclude using Theoremb.2.2 0

Theorem5.2.2is rather restrictive. Nevertheless a lot of solutions can be put in the
form (5.12). Some solutions are even locally integrable functions. For example take
2 equal to the surface measure on the unit sphere whed > 1. Up to a constant we
have

(5.20) E (x,y)= e XY e d2(/).
Si 1

As an average of measures, it is a measure. It is actually locally integrable since an
easy computation shows that
= >d" 3

1 Y2 T g (xy)
(5.21) E . (x,y)= C(d)m 1% W € T # x|<y< |x]|*

It has the following properties, due to (5.20) and (5.21):

Proposition 5.2.4 . B The function E, debned by(5.21) is a slowly increasing func-
tion on RY*1, and is in particular locally integrable. It is its own Fourier Transform,
and vanishes exactly whery? > |x|?. Moreover, whend! 3, E. isin LP(R%*) for p
in the range fﬁ% <p<d +1. In particular, when d! 4, E ' L%(R%1).

It is not obvious at Prst glance that E. = E_ if we look at the formula (5.21). To
prove it one has to use 6.20) and the fact that Eg = Ey .

Before giving weak uncertainty principles associated to the Lorentz Form, we begin
by a lemma which will be useful.
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Lemma 5.2.5. b Let m be a distribution on the sphere such that

+(,/',/-)dm(/) =0
Siv 1

for all smooth + supported by a subintervall 0 10,1[and /"' Syz1. Then m =0.

Proof. ® We brst prove the lemma whend = 2. Using polar coordinates in the complex
plane, the hypothesis is rewritten as

+(cos( $/'))dm(/)=0
;

for all smooth + supported in J. Here m is a distribution on the torus T. Using the
function cos’! and changing variables, we can as well assume that

[+(/ $/Y+ +('$ /)]dm(/)=0
;

for any smooth function + supported by a Pxed subinterval ¥ of ]0,"/ 2[. Take for +
an approximate identity converging to the Dirac mass ata' J. The brst term tends
to the translate of m by $a, and the second one to the translate bya. The Fourier
coelcients of the sum, that is cos@k)m(k) vanish for a in a small interval. Hence
m(k) =0 for all k. We conclude thatm =0.

The general case is done in the same way, using the harmonic analysis on the

sphere. The operatorLg debned by

Ls(m)(/") = +(,/',1-)dm(/)

Suv 1

maps distributions debPned onSyx 1 (and hence polynomials) into the space of contin-
uous functions. Moreover it commutes with the action of the orthogonal groupSO(d)
on Sy 1. In fact it is a generalized convolution operator onSy4 ;. It follows (see P],
Chapter 11.4) that if a distribution m(/) is decomposed as

m = My
k

where my is a harmonic polynomial of orderk, and the sum converges in the distri-
bution sense, then .
Ls(m)=  c(+)mg,
where the coelcients ¢ (+) are the Fourier coelcients of the operator Lg. Since
Lg(m) =0 it follows that

C(+)me =0

for any k and + supported in J. So it sulces to prove that for any Kk, there exists+
such that ¢ (+) =0.
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The coelcient ¢ (+) is given by the scalar product of the zonal function+(,/, e4-)
with the zonal polynomial of order k, Zx(,/,eq4-), whereeg = (0,...,0,1). The zonal
polynomial is given up to a constant by the Gegenbauer polynomial

Zi(t) = (1 $ t2)* (#3120 k(1 g (2)(@# 32K/ 2,

It follows that "

G(t) = +(1)Z (1)1 $ t2) 32 gg.
#1

SinceZy does not vanish, there exists a smooth supported inJ such that Ci(+) = 0.
O

We now give sulcient conditions so that the elements of G(q, g vanish everywhere.
Let us insist on the fact that the next theorem is not true for d=1.

Theorem 5.2.6 . Bletd> 1 Letf ' G(qg,0. Suppose thatf vanishes on an open
subset of the Lorentz cone, and on an open subset of the complementary invariant by
rotations in the x variable. Thenf =0.

Proof. B By assumption f vanishes in a connected component of the cone. The dis-
tribution f may be written as
'kO
f= T (Hk)
k=# ko
and we can express eachiy+ k, (Uk) as a polynomial in the creation and annihilation
operators applied to f by Lemma 5.1.12 Hence T+, (Mk) vanishes on the same
set, and it sulces to consider the casef = Ty(M), wherek ! Oand p' S’g. We
want to show that u = 0. As in the proof of Proposition 5.2.1, it sulces to consider
the casek = 0. By Proposition 5.2.1, p is supported by Sy 1. Write

B(To(W)(z,.)= e du(v).

The distribution p is a finite sum of radial derivatives at r = 1 of extensions to a
neighborhood of Sy 1 of distributions debned onSyx 1 (see R4], chapter Ill). Hence

'L

B(To(W)(Z, ) "Nz e dmy ()

1=0
'L

L BEM Nz, ),
1=0
where each distribution m; is debned onSyx ;. Then
L

Tow = "MUEn,.
1=0

We will prove that m =0 and conclude by induction.
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What we know is that f vanishes on an open set of the forml = {(x,y); x|
I ,y/|x|] " J}, wherel is a subinterval of ]0,& [ and J a subinterval of 1$ 1, 1][.
We can assume thatJ does not contain 0. It follows that ,To(),*- = 0 whenever
* ' SY(RY*1) is supported in! .

We take * of the form * 1 (|x[)* 2(X/ |X])+(y/ [X]) where* ; is smooth and supported
on | and + is smooth supported onJ, and * , is a smooth function debPned orSyx ;.
If we denote by +|,, the function +,,(y) = +(y/[x]), we have

'L

0= * 1 (IXI)* 2(x [x[yef "X CxEDT T (O, 1 -) dxdmy (/).
=0 Sw1 R
Remark that
2L
P (y) = x|+ (y/ [X])
k=# 2L

with smooth +, supported in J, and +,. (y) = y?~+(y). So if we take*; such that

(5.22) rd# ks (1)g T dr =0
0

forany k=$2L,...,2L $ 1, and

(5.23) O 2L (1)g# T gr = 1,
Rd

we see that the only remaining term is

0= *2(IXD* 2 X[ T Ox 8D ()2 ([, /=) dxdm (/)
WS 1R,
= *a(r)* (Y2 L B (Y 1) drd2(/) dmy (/)
nSr 100 S
= (1)1 () d2( ) dm (7).
STEN T

Replace+(t) by t# 2L +(t) (recall that + is supported away from0). Since * , is arbi-
trary, we get "

+(,/',/-)dm_(/)=0

Siv 1
for all /' ' Sys1 and + supported in J. Note that the last quantity is a smooth
function of /. To conclude that m, =0 we use Lemma5.2.5 O

Remark 5.2.7 . B The rotation invariance of the set is fundamental. If we use 6.12)
with measures mg supported on small caps of the sphere, then the corresponding
solution vanish on an open subset of the complementary of the cone.

Corollary 5.2.8 . DBletd! 1. Assume that an elementf of G(qg,g vanishes on
{y >alx|} withO<a< 1. Thenf =0.
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Corollary 5.2.9 . D Let d > 1. If a distribution f is supported in the set{||x|*> $

y2| <A}, and f is supported in{||!|2$ $?| < B}, for two constants A and B, then
f = 0. Hence these two sets form an annihilating pair for distributions. In particular,
unlike the cased = 1, there is no distribution f such that bothf and f are supported
by the light cone.

This is an interesting complement of Theorem3.1.23 Note that the pair (q,9 is
not annihilating in the sense of Debnition3.1.2Q

5.3. The supercritical case with Lorentz form

We give here a complement to TheorenB3.2.4in the case of a Lorentz quadratic
form. Let g be the Lorentz form, and

(5.24) q(x,y)= a;x?+ 444 agx3 $ by?,
wherea;,b' R\{ 0}. We can assume thatb > 0, changingqg to $ q if necessary. Let

a = max; |a|. Then according to Theorem3.2.4, the space of tempered distributions
f such that

(5.25) f@exp(x"q)’ S'(R™), f(dexp(z"q’)" S'(R™)

is reduced to zero whenevemax(a,b) > 1, a= banda > 0for all i. We will complete
Theorem 3.2.4 and characterize the pairs for which this is the case.

Theorem 5.3.1 . D Let q be the Lorentz quadratic form onR%*! | and debneq by
(5.29. Let |, = {i;a =a}, 14 = {i;a = %a} andJ = {j;|a| <a}. Then the space
G(q,d) of distributions satisfying (5.25 is reduced to zero if and only if one of the
four following conditions is satisbed:

1. max(a,b)> 1anda= b,

2.a=b>1landly !

3.a=b>11lg =! andcardl;) > 1,

4. a=b>1 1y =!,card(l.) =1, and max;ey |3 | > 1.

As mentioned in the remark following Theorem 3.2.4, the key point to establish
such a result is the description of the solutions in the critical cased = b= 1), which
is done in Theorem5.1.6. A particular case of Theorem5.3.1is whena, = a= b> 1

Theorem 5.3.2 . B Let q(x,y) = [x|?$y%, x' Ry, y' R,andd(x,y)= a(|x|*$ y?),
with a > 1. If d! 2, then G(q,d) = {0}. If d = 1, then G(q,d) is made of the
distributions f of the form

fooy)=  P)&Oxsy)+ Q&9 (x+y),
k k
where Py, Qy are polynomials, and&is the Dirac measure.

We also mention here without proof an immediate corollary of Theorem4.2.4
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Theorem 5.3.3 . Bletn; ! 1, ny,n3! 0, such thatn = ny + ny, + n3. For x =
(X1,X2,X3) ' RM*N2*Ns ‘and a > 1, put g(x) = [x1|? + |x2|* $ | x3|*> and ¢(!)
a($| )% + ['2/*> $|!3/?). Then G(qg,d) = {0}.

Proof of Theorem 5.3.1 assuming Theorem5.3.2. B Assume that case(1) is satisped.
When b > a, we use Theorem 8.2.4). When a > b, the & such that |a;| = a may
have di"erent signs. We can give a direct proof in that case. Arguing as is the proof
of Theorem (3.2.4), we can eliminate the variablesy and x;, forj * J. We are lead to
the caseq= xi+ ad#axj andq = a;x}+ daéagx3, with |a| = a> 1. Theorem1.3.5
allows to conclude. In caseq42) and (3), we reduce as well to the case wheré = ! .
We conclude with Theorem5.3.3in case(2) and Theorem5.3.2in case(3).

We consider now casd4). Let f ' G(q,d). We have for examplel, = {1}. Here

J = ! .Choose, suchthata>,> max{|a|;j =2,...,d} > 1and put ¢ = , #1q.
Let t such that , **max{|a[;j = 2,...,d} <t< 1. For any polynomial P in the
variables x;, j =2,...,d, consider the tempered distribution Tr on R? dePned by

Tp %= (f,* (x1,¥)) PeXp($"t#1|éF))-

Sincef ' G(q,d'), we have Tp ' G(x?$ y?,al, (x3 $ y?)). Theorem 5.3.2 gives
in particular that there exists n depending only on the order off such that (x2 $
y?)"Tp (x1,y) = 0. Take

*(,Y) = (X1 $ y?)"Q(x1, y) exp($ "t *1(xF + y?)),
where Q is a polynomial, and use Lemmal.2.2 to conclude that (x2 $ y?)"f = 0.
Hence !
f(x,y)exp("  x7)' S'(R™).
i %3
For the same reason,
f(1,$)exp(" (ax! 2 + 444 a!2)) ' S'(RI).

Theorem 1.3.5givesf =0, sincemax{|a|,j =2,...,d} > L

In the remaining cases, there is always a non zero element i&(q, d). Indeed, when
max(a, b) % 1, the standard Gaussian function is a solution. And ifa= b > 1,14, =1,
I+ = {1}, and maxju & %1, we can takef equal to

&X1$y)) #(Xz2,...,Xd),
where # is the standard Gaussian function. O

We prove now Theorem5.3.2

Proof. © We brst consider the cased ! 2. Let f ' G(q,d). We will use the fact that
forany 1 %) % a, f(%) ' G(q,09. The distribution f itself belongs to G(q, 9.
Theorems5.1.2and 4.2.2imply that f can be uniquely written as a Pnite sum

f= T (M),
K
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where p S!ET. We will prove by induction on k that pyx =0. By Lemma 5.1.12 and
the formula

(") 2§ k(W) = To(" f).
we only have to consider the casé = Tp(l).
Redebne the Gaussian functior# , for (> 0, by

#(xy)= (192 exp($%

We havef % # % # = f % #.,, or equivalently

(x2+ 444 x3 + y?)).

$
AP S S+ YIS (xS 27 +(y$.)7) cxay
2 2
= BN+ 0P V2 ) exp(S oy iy
(

wheref,(§ = (*92f (" T+ (4. By assumption onf, f, ' G(q, 9 for ( small enough.
For vl < 1, call *y, (z,.) the expression

),

exp(",V, Xy- )exp$$ (x +y)$ (((x$ 2)2+(y$ )%+ gi (;)%dxdy,

so that "
BENL+ 02z, )= %z, du).
An straightforward computation shows that

C(0
2+ ((1$]vP)

0 (0,)= < exp(53(v, (). %)

with 3(v,() 3 (ﬁ as(* 0. Theorem 5.1.2implies that 8(f)(0,.) is a polyno-
mial. Take derivatives with respect to ., and the limit at ( = 0. We get

(18] v)" du(v) =
for n large enough. Hencau is supported by Sy 1.

In the same way, we have

C(0
4(v, ()
with 4(v,() 3 1as(* 0. HereM (v, () is a real matrix such that
(22 $,v,2-%)

4
as(* 0.SinceB(fi)(z,0) is"a polynomial in z, we see that

*v,! (Z!O) =

eXp($ ! ,M (V! ()Z! Z'),

M(v,0)z,z-3

(z%$, v,z-%)" du(v) = 0
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for n large enough. This is also true for a partial derivative ofu, since To(' 1V)(H1) can
be expressed as a polynomial in the creation and annihilation operators applied to
To(M). Hence "

(2%, v,z-9)"P(,v,z-) du(v) = 0
for any polynomial P, and n large enough. It follows that

(5.26) (22$, v,z-)" exp(",v,.z-) dp(v) = 0

for largen,.' Candz' CH.

We prove now that (5.26) implies that © = 0. The distribution u may be written
as a bnite sum

k=0
of radial derivatives of distributions my on the unit sphere S¥ 1. Relation (5.26) may
be rewritten as

$ 1 %N
0= "2+ g 2"

(1)< ke K exp(2" ,/,z. -)dmy(/).
Sd" 1

k=0
Take real z, ., and take a Fourier transform with respect to .. We bnd

"N
0=(xi+aaaxisy)" ($1)F )y o &= x& dmi(/).
k=0 !
Hence the distribution
|N "
gx.y) =exp($" (IXI°$ y?) (1) Jy" oo &= xe dmi(l)
k=0

vanishes for|x|?$ y? = 0. Since it belongs toG(q, ¢ by (5.12, Theorem 5.2.6implies
that g=0, and hencep = 0. This conclude the proof whend! 2.

When d = 1, the previous argument may be adapted, but one has to be more
careful in the reduction of the problem, since non zero distributionsp are allowed.
We give a simpler proof. We can assume that the two quadratic forms are given by

aix,y)=2xy, q'(,$) =2al$,

with a > 1. Then any element of G(q, g can be decomposed as in Theorers.1.8 Let
f ' G(q,d). We will use the fact that f,(x,y) = f (x,ya”!) belongs toG(q, g. Let g
be the Fourier transform of f with respect to the variable y. Theorem 5.1.8 implies
that g(x,y), for (x,y) =0, can be decomposed as

ax.y) = x*y'gg (x2+y?),
kI
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where the sum is Pnite, andgx, are real analytic functions on R(+ . Sincef, ' G(q,9,
we also have '
— ky,l 2 2142
gxy)=  x‘yhg(x®+y“a%),
k|

where the sum is bnite, andhy, are real analytic functions on R(+ . These two expres-
sions cannot occur simultaneously, unlesg is given by a polynomial for (x,y) = 0.

It follows that g is a sum of a polynomial, and a distribution supported by the origin
(which is a sum of derivatives of Dirac measures). The result follows. O

5.4. Description of other spaces  G(q,d)

Theorem 5.4.1 . D Let q be the Lorentz form onRY, and g given by
v d
ah= (17
i=1
with ({ '{$ 1,+1}. Then any element off of G(q,d) can be written as

'N

fO)= PuX"x) exp($ " 19(x)1%) dik(9),
k=1 o(@+0(d)

where P, are polynomials andpy are bnite measures on the grou(q) 1 O(q).

Proof. B We may write, changing the sign ofd if necessary,
a(x) = [xal®+ [x2l* $ | xsl?, d(1)= [11*$[ 1ol + |'s]?,

with x;,!; ' R%, d3 =1, and d; + d» + d3 = d. We apply Theorem 4.2.4, and then
Theorem 5.1.6to the form |x,|?> $| x3|2. It gives the required form for f , once we have

noticed that any matrix of the form c

I O
0 %
with go ' O(d>, 1), belongs toO(qg) 1 O(q). O

We now give two generalizations of Theorenb.1.8 The proofs are very similar to
the one of Theorem5.1.6, and we will skip them.
We will brst describe the space of distributionsf on R?? such that
(527)  foy)exp(”  (ixiyi) ' S'(R™), F(L$)exp("  (ixiyi) ' S'(R™),
i [
for all choices of(;, ({ ' {$ 1,+1}. Particular examples are the distributions f such
that,

$ %
f(xy)= 0 exp@2" |xiyil) ,
$ ' %
£(1,$)= O exp($2" |L&]) .
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In view of Theorem 5.1.8, every function of the form
Huoy)= exp@" [t + y/t]) du(ta, . ta)
(RY) i

is a solution, whenp is a Pnite measure on(R{ )9.

Theorem 5.4.2 . D letf ' S'(R?). Then f satisPes(5.27) if and only if there exist
polynomials Py, k =1,...,N, Pnite measurespy on (R{ )Y, such that

f(X,y)= Pk(X.y,'x,'y)Hpk(X.y).
k
Sketch of the proof b Let F be the Bargmann transfo>rm off , and

G(z,.)= F E(%i% .
We can show as in the proof of Theorenb.1.6 that
IG(z, )| %C@+ |z + |. DY exp(" | Re(z)|| Re(.i)| + | Fm(zi)|| In(.1)].)

i
We conclude with Paley-Wiener-SchwartzOs Theorem. O
We can as well prove the following generalization of Theorenb.1.8 Let - be a

smooth function, equal to 0 in a neighborhood of the origin, and to 1 in the comple-
ment of some compact set. We consider the distributions ' S'(RY) such that

- (IXIlyDf (x, y)exp(2" Ix|ly]) * S'(RY),
- (IIShE (L $)exp |LIS) * S'(RY).

Again, we use a cuto” function because the norm is not smooth at the origin. Examples
are distributions satisfying

11} %
f(xy)= O exp(@2"|x|lyl) ,
$ %
£(1,$)= O exp($2'|'[|$]) .
It is not necessary forx and y to have the same number of components. We choose
(x,y)' RY with x' R<andy' R', k+1=d.

Theorem 5.4.3 . D Letf ' S'(RY). Then f satisbes(5.29 if and only if there exist
polynomials Py, Pnite measurespy on Ffﬁr, such that for all x,y,

(5.28)

Fooy) = Py, x'y)  exp@rtix®$ "Iy ) di(t).
k R

Sketch of the proof B Let F be the Bargmann transform off . Then it can be shown,
as whend =1, that there exist C,N > 0 such that for all z, .,

IF(z,.)1%C(L+ |z| + |. DN exp(" | Re(z* $ . 2))).

This is done as in the proof of Lemmab5.1.1 We conclude with Paley-Wiener-
SchwartzOs Theorem. O
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