Groupes de Chow-Witt (2008)


Fasel, Jean
Mémoires de la Société Mathématique de France, Tome 113 (2008) viii-197 p
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consulter l'article sur le site de la revue
doi : 10.24033/msmf.425
URL stable : http://www.numdam.org/item?id=MSMF_2008_2_113__1_0

Bibliographie

[Ba1] P. Balmer, Derived Witt groups of a scheme, Journal of pure and applied alg. 141, no. 2 (1999), 101-129. Zbl 0972.18006 | MR 1706376

[Ba2] P. Balmer, Triangular Witt Groups. Part I : the 12-term exact sequence, K-theory 19 (2000), 311-363. Zbl 0953.18003 | MR 1763933

[Ba3] P. Balmer, Triangular Witt Groups. Part II : from usual to derived, Math. Zeitschrift 236, no. 2 (2001), 351-382. Zbl 1004.18010 | MR 1815833

[Ba4] P. Balmer, Products of degenerate quadratic forms, Compositio Math. 141 (2005), 1374-1404. Zbl 1087.18008 | MR 2188441

[BG] P. Balmer, S. Gille, Koszul complexes and symmetric forms over the punctured affine space, Proceedings of the London Mathematical Society 91, no 2 (2005), 273-299. Zbl 1078.11026 | MR 2167088

[BW] P. Balmer, C. Walter, A Gersten-Witt spectral sequence for regular schemes, Annales Scientifiques de l’ENS. 35, no. 1 (2002), 127-152. Numdam | Zbl 1012.19003 | | MR 1886007

[BM] J. Barge, F. Morel, Groupe de Chow des cycles orientés et classe d’Euler des fibrés vectoriels, C. R. Acad. Sci. Paris 330 (2000), 287-290. MR 1753295

[BO] J. Barge, M. Ojanguren, Fibrés algébriques sur une surface réelle, Comment. Math. Helv. 62 (1987), 616-629. Zbl 0647.14011 | | MR 920061

[BOU] N. Bourbaki, Algèbre, Eléments de mathématiques, chapitre 10, Masson (1980), Paris. Zbl 0455.18010 | MR 610795

[BS1] S. M. Bhatwadekar, Raja Sridharan, Projective generation of curves in polynomial extensions of an affine domain and a question of Nori, Invent. Math. 133 (1998), 161-192. Zbl 0936.13005 | MR 1626485

[BS2] S. M. Bhatwadekar, Raja Sridharan, Zero cycles and the Euler class groups of smooth real affine variety, Invent. Math. 136 (1999), 287-322. Zbl 0949.14005 | MR 1688449

[BS3] S. M. Bhatwadekar, Raja Sridharan, The Euler class group of a noetherian ring, Compositio Math. 122 (2000), 183-222. Zbl 0999.13007 | MR 1775418

[BH] W. Bruns, J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, 39. Cambridge University Press, Cambridge, 1993. Zbl 0788.13005 | MR 1251956

[Fa] J. Fasel, The Chow-Witt ring, Doc. Math. 12 (2007), 275–312. Zbl 1169.14302 | | MR 2350291

[Fu] W. Fulton, Intersection theory, Ergebnisse der Math. und ihrer Grenzgebiete (1984), Springer. Zbl 0541.14005 | MR 732620

[Gi1] S. Gille, On Witt-groups with support, Thèse, 2001.

[Gi2] S. Gille, A transfer morphism for Witt groups, J. reine angew. Math. 564 (2003), 215-233. Zbl 1050.11046 | MR 2021041

[Gi3] S. Gille, A graded Gersten-Witt complex for schemes with dualizing complex and the Chow group, J. Pure Appl. Algebra 208 (2007), no. 2, 391–419. Zbl 1127.19005 | MR 2277683

[Gi4] S. Gille, The general dévissage theorem for Witt groups of schemes Arch. Math. (Basel) 88 (2007), no. 4, 333–343. Zbl 1175.19001 | MR 2311840

[Gro1] A. Grothendieck, Eléments de géométrie algébrique (EGA) II, Publ. math IHES 32 (1967).

[Gro2] A. Grothendieck, Eléments de géométrie algébrique (EGA) III, Publ. math IHES 32 (1967).

[Gro3] A. Grothendieck, Eléments de géométrie algébrique (EGA) IV, Publ. math IHES 32 (1967). Zbl 0153.22301

[Ha1] R. Hartshorne, Residues and duality, Lecture Notes in Math. 20 (1966), Springer. | MR 222093

[Ha2] R Hartshorne, Algebraic geometry, Graduate text in Math. 52 (1977), Springer. MR 463157

[Kn] M. Knebusch, On algebraic curves over real closed fields I, Math. Zeitschrift 150 (1976), 49-70. Zbl 0327.14009 | | MR 422227

[Ku] E. Kunz, Kähler differentials, Adv. lectures in Math. (1986), Vieweg und Sohn. Zbl 0587.13014 | MR 864975

[Ma] B. Magurn, An algebraic introduction to K-theory, Encyclopedia of Math. and its Applic. 87 (2002). Zbl 1002.19001 | MR 1906572

[Mat] H. Matsumura, Commutative ring theory, Cambridge Studies in Adv. Math., Cambridge University Press (1986), Cambridge.

[Mi] J. Milnor, Algebraic K-theory and quadratic forms, Invent. Math. 9 (1969-1970), 318-344. | MR 260844

[MH] J. Milnor, D. Husemoller, Symmetric bilinear forms, Ergebnisse der Math. und ihrer Grenzgebiete 73 (1973), Springer. Zbl 0292.10016 | MR 506372

[Mo] F. Morel, 𝔸 1 -homotopy classification of vector bundles over smooth affine schemes, preprint available at http ://www.mathematik.uni-muenchen.de/ morel/preprint.html

[Mu1] M. P. Murthy, A survey of obstruction theory for projective modules of top rank, Contemp. Math. 243 (1999), 153-174. Zbl 0962.13008 | MR 1732046

[Mu2] M. P. Murthy, Zero cycles and projective modules, Ann. Math. 140 (1994), 405-434. Zbl 0839.13007 | MR 1298718

[Pl] B. R. Plumstead, The conjectures of Eisenbud and Evans, Amer. Journal of Math. 105 (1983), 1417-1433. Zbl 0532.13008 | MR 722004

[QSS] H.-G. Quebbemann, W. Scharlau, M.Schulte, Quadratic and hermitian forms in additive and abelian categories, Journal of Algebra 59, no. 2 (1979), 264-290. Zbl 0412.18016 | MR 543249

[Ro] M. Rost, Chow groups with coefficients, Doc. Math. 1 (1996), 319-193. Zbl 0864.14002 | | MR 1418952

[Sc] W. Scharlau, Quadratic and hermitian forms, Grundlehren der math. Wissen. 270 (1985), Springer. Zbl 0584.10010 | MR 770063

[Sch] M. Schmid, Wittringhomologie, Thèse, 1997.

[Se] J.-P. Serre, Corps locaux, Public. institut math. université Nancago VIII (1968), Hermann. MR 354618

[Sw] R. G. Swan, A cancellation theorem for projective modules in the metastable range, Invent. Math. 122 (1985), 113-153. | MR 376681

[Vo] V. Voevodsky, Motivic cohomology with /2 coefficients, Public. Hautes Etudes Sci. 98 (2003), 59-104. Numdam | Zbl 1057.14028 | | MR 2031199

[We] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Adv. Math., Cambridge University Press (1994), Cambridge. Zbl 0797.18001 | MR 1269324