@article{ASENS_2002_4_35_1_127_0,
author = {Balmer, Paul and Walter, Charles},
title = {A {Gersten-Witt} spectral sequence for regular schemes},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {127--152},
year = {2002},
publisher = {Elsevier},
volume = {Ser. 4, 35},
number = {1},
doi = {10.1016/s0012-9593(01)01084-9},
zbl = {1012.19003},
language = {en},
url = {https://www.numdam.org/articles/10.1016/s0012-9593(01)01084-9/}
}
TY - JOUR AU - Balmer, Paul AU - Walter, Charles TI - A Gersten-Witt spectral sequence for regular schemes JO - Annales scientifiques de l'École Normale Supérieure PY - 2002 SP - 127 EP - 152 VL - 35 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/s0012-9593(01)01084-9/ DO - 10.1016/s0012-9593(01)01084-9 LA - en ID - ASENS_2002_4_35_1_127_0 ER -
%0 Journal Article %A Balmer, Paul %A Walter, Charles %T A Gersten-Witt spectral sequence for regular schemes %J Annales scientifiques de l'École Normale Supérieure %D 2002 %P 127-152 %V 35 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/s0012-9593(01)01084-9/ %R 10.1016/s0012-9593(01)01084-9 %G en %F ASENS_2002_4_35_1_127_0
Balmer, Paul; Walter, Charles. A Gersten-Witt spectral sequence for regular schemes. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 35 (2002) no. 1, pp. 127-152. doi: 10.1016/s0012-9593(01)01084-9
[1] , Derived Witt groups of a scheme, J. Pure Appl. Algebra 141 (1999) 101-129. | Zbl | MR
[2] , Triangular Witt groups. Part I: The 12-term localization exact sequence, 19 (2000) 311-363. | Zbl | MR
[3] , Triangular Witt groups. Part II: From usual to derived, Math. Z. 236 (2001) 351-382. | Zbl | MR
[4] Balmer P., Walter C., Derived Witt groups and Grothendieck duality, in preparation.
[5] , , , Faisceaux pervers, Astérisque 100 (1982). | Zbl | MR
[6] , , Homological Algebra, Princeton Univ. Press, 1956. | Zbl | MR
[7] , Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, 1995. | Zbl | MR
[8] Ettner A., Zur Residuenabbildung in der Theorie quadratischer Formen, Diplomarbeit, Regensburg, 1999.
[9] , On the injectivity of the map of the Witt group of a scheme into the Witt group of its function field, Math. Ann. 277 (1987) 453-468. | Zbl | MR
[10] , Algebraic Geometry, Springer-Verlag, 1977. | Zbl | MR
[11] , On the cyclic homology of exact categories, J. Pure Appl. Algebra 136 (1999) 1-56. | Zbl | MR
[12] , Appendix: On Gabriel-Roiter's axioms for exact categories, Trans. Amer. Math. Soc. 351 (1999) 677-681. | MR
[13] , Categories for the Working Mathematician, Springer-Verlag, 1998. | Zbl | MR
[14] , , Symmetric Bilinear Forms, Springer-Verlag, 1973. | Zbl | MR
[15] , The derived category of an exact category, J. Algebra 135 (1990) 388-394. | Zbl | MR
[16] , , , , Witt groups of the punctured spectrum of a 3-dimensional local ring and a purity theorem, J. London Math. Soc. 59 (1999) 521-540. | Zbl | MR
[17] , , A purity theorem for the Witt group, Ann. Scient. Éc. Norm. Sup. (4) 32 (1999) 71-86. | Zbl | MR | Numdam
[18] , A relation between Witt groups and 0-cycles in a regular ring, in: Springer Lect. Notes Math., 1046, 1984, pp. 261-328. | Zbl | MR
[19] , The filtered Gersten-Witt resolution for regular schemes, Preprint, 2000 , http://www.math.uiuc.edu/K-theory/0419/.
[20] , Witt groups of affine three-folds, Duke Math. J. 57 (1988) 947-954. | Zbl | MR
[21] , , , Quadratic and Hermitian forms in additive and Abelian categories, J. Algebra 59 (1979) 264-289. | Zbl | MR
[22] , Algebraic L-theory. I. Foundations, Proc. London Math. Soc. (3) 27 (1973) 101-125. | Zbl | MR
[23] , Additive L-theory, 3 (1989) 163-195. | Zbl | MR
[24] , http://www.math.ohio-state.edu/~rost/schmid.html.
[25] Schmid M., Wittringhomologie, Ph.D. dissertation, Regensburg 1997. Cf. [24].
[26] , Des catégories dérivées des catégories abéliennes (Thèse de doctorat d'état, Paris, 1967), Astérisque 239 (1996). | Zbl | MR | Numdam
[27] Walter C., Obstructions to the Existence of Symmetric Resolutions, in preparation.
[28] , An Introduction to Homological Algebra, Cambridge Univ. Press, 1994. | Zbl | MR
Cité par Sources :





