Cobordisme complexe des espaces profinis et foncteur T de Lannes
Mémoires de la Société Mathématique de France, no. 98 (2004), 144 p

[1] J.F. AdamsLectures on Generalized Cohomology Theories, Lect. Notes in Math., vol. 99, Springer, 1969. | MR 251716 | Zbl 0193.51702

[2] —, Stable Homotopy and Generalized Homology, University of Chicago Press, 1974.

[3] M. Artin & B. MazurEtale Homotopy, Lect. Notes in Math., vol. 100, Springer, 1969. | MR 245577 | Zbl 0182.26001

[4] M. Barr & J. Beck« Homology and standard constructions », in Seminar on triples and Categorical Homology Theory, Lect. Notes in Math., vol. 80, Springer, 1969, p. 245–335. | MR 258917 | Zbl 0176.29003

[5] M. Bendersky, E.B. Curtis & H.R. Miller« The Unstable Adams Spectral Sequence for Generalized Homology », Topology 3 (1978), p. 229–248. | MR 508887 | Zbl 0395.55010

[6] J.M. Boardman« Stable Operations in Generalized Cohomology », in Handbook of algebraic topology, 1995, p. 585–686. | MR 1361899 | Zbl 0861.55008

[7] —, « Conditionally Convergent Spectral Sequences », Contemp. Math., vol. 239, 1999, p. 49–84. | MR 1718076 | Zbl 0947.55020

[8] J.M. Boardman, D.C. Johnson & W.S. Wilson« Unstable Operations in Generalized Cohomology », in Handbook of algebraic topology, 1995, p. 687–828. | MR 1361900 | Zbl 0876.55016

[9] F. BorceuxHandbook of categorical algebra, 2. Categories and structures, Cambridge University Press, 1994. | MR 1313497 | Zbl 0911.18001

[10] Bourbaki – Algèbre, chap. X, Masson, 1980.

[11] A.K. Bousfield« Nice homology coalgebra », Trans. Amer. Math. Soc. 148 (1970), p. 473–489. | MR 258919 | Zbl 0199.33302

[12] —, « On the homology spectral sequence of a cosimplicial space », Amer. J. Math. 109 (1987), p. 361–394. | MR 882428 | Zbl 0623.55009

[13] A.K. Bousfield & D.M. KanHomotopy Limits, Completions, and Localizations, Lect. Notes in Math., vol. 304, Springer, 1972. | MR 365573 | Zbl 0259.55004

[14] H. Cartan & S. EilenbergHomological Algebra, Princeton University Press, 1956. | MR 77480 | Zbl 0075.24305

[15] P.E. Conner & L. Smith« On the complex bordism of finite complexes », Publ. Math. Inst. Hautes Études Sci. 37 (1969), p. 117–221. | Numdam | MR 267571 | Zbl 0192.60201

[16] F.-X. Dehon & J. Lannes« Sur les espaces fonctionnels dont la source est le classifiant d’un groupe de Lie compact commutatif », Publ. Math. Inst. Hautes Études Sci. 89 (1999), p. 127–177. | MR 1793415

[17] A. Dress« Zur Spectralsequenz von Faserungen », Invent. Math. 3 (1967), p. 172–178. | MR 267585 | Zbl 0147.23401

[18] E. Dror Farjoun & J. Smith« A Geometric Interpretation of Lannes’ Functor T », in Théorie de l’homotopie, Astérisque, vol. 191, 1990, p. 87–95. | MR 1098968 | Zbl 0723.55006

[19] W.G. Dwyer & J. Splalinski« Homotopy Theories and Model Categories », in Handbook of algebraic topology, 1995, p. 73–126. | MR 1361887 | Zbl 0869.55018

[20] P.G. Goerss & J.F. JardineSimplicial Homotopy Theory, Progress in Math., vol. 174, Birkäuser, 1999. | MR 1711612 | Zbl 0914.55004

[21] N. Kuhn & M. Winstead« On the Torsion in the Cohomology of Certain Mapping Spaces », Topology 35 (1996), p. 875–881. | MR 1404914 | Zbl 0861.55019

[22] P.S. Landweber« Coherence, Flatness and Cobordism of Classifying Spaces », in Proc. adv. Study Inst. alg. Topol., 1970, p. 256–269. | MR 271964 | Zbl 0223.57025

[23] J. Lannes« Sur les espaces fonctionnels dont la source est le classifiant d’un p-groupe abélien élémentaire », Publ. Math. Inst. Hautes Études Sci. 75 (1992), p. 135–244. | MR 1179079

[24] —, « Divers aspects des opérations de Steenrod », in Journée en l’honneur de Henri Cartan, Journée Annuelle, Société Mathématique de France, 1997, p. 18–27. | MR 1492594

[25] S. Mac LaneCategories for the Working Mathematician, Springer, 1971. | MR 1712872 | Zbl 0232.18001

[26] P. MaySimplicial Objects in Algebraic Topology, University of Chicago Press, 1967. | MR 1206474

[27] —, The geometry of iterated loop spaces, Lect. Notes in Math., vol. 271, Springer, 1972. | Zbl 0244.55009

[28] F. Morel« Quelques remarques sur la cohomologie modulo p des pro-p-espaces et les résultats de Jean Lannes concernant les espaces fonctionnels 𝐡𝐨𝐦(BV,X) », Ann. scient. Éc. Norm. Sup. 4 e série 26 (1993), p. 309–360.

[29] —, « Ensembles profinis simpliciaux et interprétation géométrique du foncteur T », Bull. Soc. math. France 124 (1996), p. 347–373. | MR 1414543

[30] D.G. QuillenHomotopical Algebra, Lect. Notes in Math., vol. 43, Springer, 1967. | MR 223432 | Zbl 0168.20903

[31] —, « An Application of Simplicial Profinite Groups », Comment. Math. Helv. 44 (1969), p. 45–60. | MR 242156 | Zbl 0232.20065

[32] D.C. Ravenel & W.S. Wilson« The Hopf ring for complex cobordism », J. Pure Appl. Algebra 9 (1976), p. 241–280. | MR 448337 | Zbl 0373.57020

[33] D.C. Ravenel, W.S. Wilson & N. Yagita« Brown-Peterson cohomology from Morava K-theory », K-Theory 15 (1998), p. 147–199. | MR 1648284 | Zbl 0912.55002

[34] D. Rector« Steenrod operations in the Eilenberg-Moore spectral sequence », Comment. Math. Helv. 45 (1970), p. 540–552. | MR 278310 | Zbl 0209.27501

[35] L. SchwartzUnstable Modules over the Steenrod Algebra and Sullivan’s Fixed Point Set Conjecture, University of Chicago Press, 1994. | MR 1282727 | Zbl 0871.55001

[36] G. Segal« Classifying Spaces and Spectral Sequences », Publ. Math. Inst. Hautes Études Sci. 34 (1968), p. 105–112. | Numdam | MR 232393 | Zbl 0199.26404

[37] D. Sullivan« Genetics of Homotopy Theory and the Adams Conjecture », Ann. of Math. 100 (1974), p. 1–79. | MR 442930 | Zbl 0355.57007

[38] T. tom Dieck – « Bordism of G-manifolds and integrality theorems », Topology 9 (1970), p. 345–358. | MR 266241

[39] C.W. Wilkerson« lambda-ring, binomial domains, and vector bundles over P », Comm. Algebra 10 (1982), p. 311–328. | MR 651605 | Zbl 0492.55004

[40] W.S. Wilson« The Ω-spectrum for Brown-Peterson Cohomology, Part I », Comment. Math. Helv. 48 (1973), p. 45–55. | MR 326712 | Zbl 0256.55007