Spectral properties of self-similar lattices and iteration of rational maps  [ Propriétés spectrales des réseaux auto-similaires et itération d’applications rationelles ] (2003)


Sabot, Christophe
Mémoires de la Société Mathématique de France, Tome 92 (2003) vi-104 p doi : 10.24033/msmf.405
URL stable : http://www.numdam.org/item?id=MSMF_2003_2_92__1_0

Bibliographie

[1] S. AlexanderSome properties of the spectrum of the Sierpinski gasket in a magnetic field, Phys. Rev., B29 (1984), 5504–5508. MR 743875

[2] M.T. Barlow, E. PerkinsBrownian motion on the Sierpiński gasket. Probab. Theory Related Fields, 79 (1988), no 4, 543–623. Zbl 0635.60090 | MR 966175

[3] M.T. Barlow, J. KigamiLocalized eigenfunctions of the Laplacian on p.c.f. self-similar sets, J. Lond. Math. Soc., 56 (1997), no 2, 320–332. Zbl 0904.35064 | MR 1489140

[4] J. BellissardRenormalization group analysis and quasicrystals. Ideas and methods in quantum and statistical physics (Oslo, 1988), Cambridge Univ. Press, Cambridge, 1992, 118–148. Zbl 0789.58080 | MR 1190523

[5] F.A. BerezinThe method of second quantization. Translated from the Russian by Nobumichi Mugibayashi and Alan Jeffrey. Pure and Applied Physics, vol. 24, Academic Press, New York-London, 1966. Zbl 0151.44001 | MR 208930

[6] M. Berger, A. LascouxVariétés kähleriennes compactes. (French) Lecture Notes in Mathematics, vol. 154, Springer-Verlag, Berlin-New York, 1970. Zbl 0205.51702 | MR 278248

[7] D. CarlsonWhat are Schur complements, anyway? Linear Algebra Appl., 74 (1986), 257–275. Zbl 0595.15006 | MR 822151

[8] R. Carmona, J. LacroixSpectral Theory of Random Schrödinger Operators, Probabilities and applications, Birkhaüser, Boston, 1990. Zbl 0717.60074 | MR 1102675

[9] Y. Colin De VerdièreRéseaux électriques planaires I, Comment. Math. Helv., 69 (1994), 351–374. Zbl 0816.05052 | | MR 1289333

[10] —, Déterminants et intégrales de Fresnel, Ann. Inst. Fourier, 49 (1999), no 3, 861–881. Numdam | Zbl 0920.35042 | | MR 1703428

[11] J.-P. DemaillyMonge-Ampère operators, Lelong numbers and intersection theory, complex analysis and geometry, Univ. Ser. Math., Plenum Press, 1993, 115–193. Zbl 0792.32006 | MR 1211880

[12] J. Diller, C. FavreDynamics of bimeromorphic maps of surfaces, Preprint Zbl 1112.37308 | MR 1867314

[13] C. FavreDynamique des applications rationelles. PhD thesis, Université Paris-Sud-Orsay.

[14] C. Favre, V. GuedjDynamique des applications rationelles des espaces multi-projectifs, To appear in Indiana Math. J.

[15] R. FormanFunctional determinants and geometry, Invent. Math., 88 (1987), 447–493. Zbl 0602.58044 | | MR 884797

[16] J.E. Fornaess, N. SibonyComplex dynamics in higher dimension II. Modern methods in complex analysis (Princeton, NJ, 1992), Ann. of Math. Stud., vol. 137, Princeton Univ. Press, Princeton, NJ, 1995, 135–182. Zbl 0847.58059 | MR 1369137

[17] M. Fukushima, Y. Oshima, M. TakedaDirichlet forms and symmetric Markov processes, de Gruyter Stud. Math. vol. 19, Walter de Gruyter, Berlin, New-york, 1994. MR 1303354

[18] M. FukushimaDirichlet forms, diffusion processes and spectral dimensions for nested fractals, in : Ideas and Methods in Mathematical analysis, Stochastics and Applications, Proc. Conf. in Memory of Hoegh-Krohn, vol. 1 (S. Albevario et al., eds.), Cambridge Univ. Press, Cambridge, 1993, 151–161. MR 1190496

[19] M. Fukushima, T. ShimaOn the spectral analysis for the Sierpinski gasket, Potential Analysis, 1 (1992), 1–35. Zbl 1081.31501 | MR 1245223

[20] —, On the discontinuity and tail behaviours of the integrated density of states for nested pre-fractals., Comm. Math. Phys., 163 (1994), 461–471. Zbl 0798.58049 | MR 1284792

[21] V. GuedjRepresentation theorems for positive closed (1,1)-currents on flag manifolds of GL m (), Preprint.

[22] P.A. Griffiths, J. HarrisPrinciples of algebraic geometry. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1994. Zbl 0836.14001 | MR 1288523

[23] B. HamblyBrownian motion on a homogeneous random fractal. Probab. Theory Related Fields, 94 (1992), no 1, 1–38. Zbl 0767.60075 | MR 1189083

[24] L. HörmanderNotions of convexity. Progress in Mathematics, vol. 127, Birkhäuser Boston, Inc., Boston, MA, 1994. Zbl 0835.32001 | MR 1301332

[25] J. KigamiHarmonic calculus on p.c.f. self-similar sets, Trans. Am. Math. Soc., 335 (1993), 721–755. Zbl 0773.31009 | MR 1076617

[26] —, Distribution of localized eigenvalues of Laplacians on post-critically finite self-similar sets, J. Funct. Anal., 159 (1998), no 1, 170–198. Zbl 0908.35087

[27] J. Kigami, M.L. LapidusWeyl’s problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals, Commun. Math. Phys., 158 (1993), no 1, 93–125. Zbl 0806.35130 | MR 1243717

[28] A. KleinExtended states in the Anderson model on the Bethe lattice. Adv. Math., 133 (1998), no 1, 163–184. Zbl 0899.60088 | MR 1492789

[29] A. KorányiA Schwartz lemma for bounded symmetric domains, Proc. Am. Math. Soc., 17 (1966), 210–213. Zbl 0138.06502 | MR 199434

[30] S. KusuokaDirichlet forms on fractals and products of random matrices. Publ. Res. Inst. Math. Sci., 25 (1989), no 4, 659–680. Zbl 0694.60071 | MR 1025071

[31] T. LindstrømBrownian motion on nested fractals. Mem. Amer. Math. Soc., 420, 1990. Zbl 0688.60065

[32] V. MetzShorted operators: an application in potential theory. Linear Algebra Appl., 264 (1997), 439–455. Zbl 0889.31003 | MR 1465881

[33] L. Pastur, A. FigotinSpectra of Random and Almost-Periodic Operators, Grundlehren der mathematischen Wissenschaften, vol. 297, Springer-Verlag, Berlin Heidelberg, 1992. Zbl 0752.47002 | MR 1223779

[34] R. RammalSpectrum of harmonic excitations on fractals, J. de Physique, 45 (1984), 191–206. MR 737523

[35] R. Rammal, G. ToulouseJ. Phys. Lett., 44 (1983), L-13.

[36] C. SabotExistence and uniqueness of diffusions on finitely ramified self-similar fractals, in Ann. Scient. Ec. Norm. Sup., 4ème série, t. 30 (1997), 605–673. Numdam | Zbl 0924.60064 | | MR 1474807

[37] —, Espaces de Dirichlet reliés par des points et application aux diffusions sur les fractals finiment ramifiés. Potential Analysis, 11 (1999), no 2, 183–212. MR 1703894

[38] —, Integrated density of states of self-similar Sturm-Liouville operators and holomorphic dynamics in higher dimension, Ann. Inst. H. Poincaré Probab. Statist., 37 (2001), no 3, 275–311. Numdam | Zbl 1038.37036 | | MR 1831985

[39] —, Pure point spectrum for the Laplacian on unbounded nested fractals. J. Funct. Anal., 173 (2000), no 2, 497–524. Zbl 0965.35103 | MR 1760624

[40] —, Schrödinger operators on fractal lattices with random blow-up, Preprint, arXiv:math-ph/0201041, to appear in Potential Analysis.

[41] —, Spectral Analysis of a self-similar Sturm-Liouville operator, preprint. Zbl 1090.34070

[42] P. Sankaran, P. VanchinathanSmall resolutions of Schubert varieties in symplectic and orthogonal Grassmannians. Publ. Res. Inst. Math. Sci., 30 (1994), no 3, 443–458 Zbl 0859.14019 | MR 1299524

[43] E. SenetaNonnegative matrices and Markov chains. Second edition. Springer Series in Statistics. Springer-Verlag, New York, 1981. Zbl 0471.60001 | MR 719544

[44] J.-P. SerreLinear Representations of Finite Groups, Graduated Texts in Mathematics, Springer-Verlag. MR 450380

[45] N. SibonyDynamique des applications rationnelles de k . (French) Dynamique et géométrie complexes (Lyon, 1997). Panor. Synthèses, 8, Soc. Math. France, Paris, 1999, 97–185. MR 1760844

[46] C.L. SiegelSymplectic geometry. Amer. J. Math., 65 (1943), 1–86. Zbl 0138.31401 | MR 8094

[47] J. Sjöstrand, W.M. WangExponential decay of averaged Green functions for random Schršdinger operators. A direct approach. Ann. Sci. École Norm. Sup. (4), 32 (1999), no 3.

[48] R.S. StrichartzFractals in the large, Canad. Math. J., 50 (1998), no 3, 638–657. Zbl 0913.28005 | MR 1629847

[49] A. TeplyaevSpectral Analysis on infinite Sierpinski Gasket, J. Funct. Anal., 159 (1998), no 2, 537–567. Zbl 0924.58104 | MR 1658094

[50] A. TerrasHarmonic analysis on symmetric spaces and applications, I, II, Spinger-Verlag New-York Inc. MR 791406

[51] W.M. WangLocalization and universality of Poisson statistics for the multidimensional Anderson model at weak disorder, Invent. Math., 146 (2001), 365–398. Zbl 1035.82023 | MR 1865399