Explosion pour l'équation de Schrödinger au régime du « log log »  [ Blow-up for the non linear Schrödinger equation in the “log log” regime ]
Séminaire Bourbaki : volume 2005/2006, exposés 952-966, Astérisque no. 311  (2007), Talk no. 953, p. 33-54

In this talk we present some recent results by Merle and Raphael on analysis of blow-up solution for the L 2 critical non linear Schrödinger equation. In particular, we focus on their proof of the fact that initial data with negative energy (which had been known to blow up by the viriel identity) and with L 2 norm close to the ground states’s L 2 norm, do blow up in the “log log” regime and that this behaviour is stable.

On présente dans cet exposé des résultats récents de Merle et Raphael sur l’analyse des solutions explosives de l’équation de Schrödinger L 2 critique. On s’intéresse en particulier à leur preuve du fait que les solutions d’énergie négative (dont on savait qu’elles explosaient par l’argument du viriel) et dont la norme L 2 est proche de celle de l’état fondamental, explosent au régime du “log log”et que ce comportement est stable.

Classification:  35B30,  35B35,  35B65
Keywords: non linear Schrödinger equations, blow-up
@incollection{SB_2005-2006__48__33_0,
     author = {Burq, Nicolas},
     title = {Explosion pour l'\'equation de Schr\"odinger au r\'egime du \guillemotleft{} log log \guillemotright{}},
     booktitle = {S\'eminaire Bourbaki : volume 2005/2006, expos\'es 952-966},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {311},
     year = {2007},
     note = {talk:953},
     pages = {33-54},
     zbl = {1194.35400},
     language = {fr},
     url = {http://www.numdam.org/item/SB_2005-2006__48__33_0}
}
Burq, Nicolas. Explosion pour l'équation de Schrödinger au régime du « log log », in Séminaire Bourbaki : volume 2005/2006, exposés 952-966, Astérisque, no. 311 (2007), Talk no. 953, pp. 33-54. http://www.numdam.org/item/SB_2005-2006__48__33_0/

[BP93] V. Buslaev & G. Perel'Man - “Scattering for the nonlinear Schrödinger equation : States close to a soliton”, St. Petersbg. Math. J. 4 (1993), no. 6, p. 1111-1142 (Russian, English). | MR 1199635 | Zbl 0853.35112

[BP95] -, “On the stability of solitary waves for nonlinear Schrödinger equations”, Amer. Math. Soc. Transl., Ser. 2 164 (1995), no. 22, p. 75-98 (English). | Zbl 0841.35108

[BW97] J. Bourgain & W. Wang - “Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity.”, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., IV. Ser. 25 (1997), no. 1-2, p. 197-215 (English). | Numdam | MR 1655515 | Zbl 1043.35137

[FMR04] G. Fibich, F. Merle & P. Raphael - “Numerical proof of a spectral property related to the singularity formation for the L 2 critical non linear Schrödinger equation”, preprint, 2004. | Zbl 1100.35097

[GM94a] L. Glangetas & F. Merle - “Concentration properties of blow-up solutions and instability results for Zakharov equation in dimension two II”, Comm. Math. Phys. 160 (1994), no. 2, p. 349-389. | MR 1262202 | Zbl 0808.35138

[GM94b] -, “Existence of self-similar blow-up solutions for Zakharov equation in dimension two I”, Comm. Math. Phys. 160 (1994), no. 1, p. 173-215. | MR 1262194 | Zbl 0808.35137

[GV79] J. Ginibre & G. Velo - “On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case”, J. Funct. Anal. 32 (1979), no. 1, p. 1-32. | MR 533219 | Zbl 0396.35028

[JP93] R. Johnson & X. B. Pan - “On an elliptic equation related to the blow-up phenomenon in the nonlinear Schrödinger equation”, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), no. 4, p. 763-782. | MR 1237613 | Zbl 0788.35041

[Lio84] P.-L. Lions - “The concentration-compactness principle in the calculus of variations. The locally compact case. I”, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, p. 109-145. | Numdam | MR 778970 | Zbl 0541.49009

[LPSS88] M. J. Landman, G. C. Papanicolaou, C. Sulem & P.-L. Sulem - “Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension”, Phys. Rev. A (3) 38 (1988), no. 8, p. 3837-3843. | MR 966356

[Mer93] F. Merle - “Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power”, Duke Math. J. 69 (1993), no. 2, p. 427-454. | MR 1203233 | Zbl 0808.35141

[Mer96a] -, “Blow-up results of virial type for Zakharov equations”, Comm. Math. Phys. 175 (1996), no. 2, p. 433-455. | MR 1370102 | Zbl 0858.35117

[Mer96b] -, “Lower bounds for the blowup rate of solutions of the Zakharov equation in dimension two”, Comm. Pure Appl. Math. 49 (1996), no. 8, p. 765-794. | MR 1391755 | Zbl 0856.35014

[MM00] Y. Martel & F. Merle - “A Liouville theorem for the critical generalized Korteweg-de Vries equation”, J. Math. Pures Appl. (9) 79 (2000), no. 4, p. 339-425. | MR 1753061 | Zbl 0963.37058

[MM02a] -, “Blow up in finite time and dynamics of blow up solutions for the L 2 -critical generalized KdV equation”, J. Amer. Math. Soc. 15 (2002), no. 3, p. 617-664 (electronic). | MR 1896235 | Zbl 0996.35064

[MM02b] -, “Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation”, Ann. of Math. (2) 155 (2002), no. 1, p. 235-280. | MR 1888800 | Zbl 1005.35081

[MM04] -, “Review on blow up and asymptotic dynamics for critical and subcritical gKdV equations”, Noncompact problems at the intersection of geometry, analysis, and topology, Contemp. Math., vol. 350, Amer. Math. Soc., Providence, 2004, p. 157-177. | MR 2082397 | Zbl 1071.35114

[MR03] F. Merle & P. Raphael - “Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation”, Geom. Funct. Anal. 13 (2003), no. 3, p. 591-642. | MR 1995801 | Zbl 1061.35135

[MR04] -, “On universality of blow-up profile for L 2 critical nonlinear Schrödinger equation”, Invent. Math. 156 (2004), no. 3, p. 565-672. | MR 2061329 | Zbl 1067.35110

[MR05a] -, “The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation”, Ann. of Math. (2) 161 (2005), no. 1, p. 157-222. | MR 2150386 | Zbl 1185.35263

[MR05b] -, “On one blow up point solutions to the critical nonlinear Schrödinger equation”, J. Hyperbolic Differ. Equ. 2 (2005), no. 4, p. 919-962. | MR 2195987 | Zbl 1117.35075

[MR05c] -, “Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation”, Comm. Math. Phys. 253 (2005), no. 3, p. 675-704. | MR 2116733 | Zbl 1062.35137

[Naw99] H. Nawa - “Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power”, Comm. Pure Appl. Math. 52 (1999), no. 2, p. 193-270. | MR 1653454 | Zbl 0964.37014

[OT91] T. Ogawa & Y. Tsutsumi - “Blow-up of H 1 solution for the nonlinear Schrödinger equation”, J. Differential Equations 92 (1991), no. 2, p. 317-330. | MR 1120908 | Zbl 0739.35093

[Per01] G. Perelman - “On the formation of singularities in solutions of the critical nonlinear Schrödinger equation”, Ann. Inst. H. Poincaré 2 (2001), no. 4, p. 605-673. | MR 1852922 | Zbl 1007.35087

[Rap04] P. Raphael - “On the blow up phenomenon for the L 2 critical non linear Schrödinger equation”, preprint, 2004. | Zbl 1158.35425

[Rap05] -, “Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation”, Math. Ann. 331 (2005), no. 3, p. 577-609. | MR 2122541 | Zbl 1082.35143

[SS99] C. Sulem & P.-L. Sulem - The nonlinear Schrödinger equation, Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York, 1999, Self-focusing and wave collapse. | MR 1696311 | Zbl 0928.35157

[Tzv05] N. Tzvetkov - “On the long time behaviour of KdV type equations”, Séminaire Bourbaki, vol. 2003/2004, Astérisque, vol. 299, 2005, exp. no 933. | Numdam | Zbl 1074.35079

[Wei85] M. I. Weinstein - “Modulational stability of ground states of nonlinear Schrödinger equations”, SIAM J. Math. Anal. 16 (1985), no. 3, p. 472-491. | MR 783974 | Zbl 0583.35028

[Wei83] -, “Nonlinear Schrödinger equations and sharp interpolation estimates”, Comm. Math. Phys. 87 (1982/83), no. 4, p. 567-576. | MR 691044 | Zbl 0527.35023

[ZS71] V. E. Zakharov & A. B. Shabat - “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media”, Ž. Èksper. Teoret. Fiz. 61 (1971), no. 1, p. 118-134. | MR 406174