@incollection{SB_1980-1981__23__258_0, author = {MacDonald, I. G.}, title = {Affine {Lie} algebras and modular forms}, booktitle = {S\'eminaire Bourbaki : vol. 1980/81, expos\'es 561-578}, series = {S\'eminaire Bourbaki}, note = {talk:577}, pages = {258--276}, publisher = {Springer-Verlag}, number = {23}, year = {1981}, mrnumber = {647501}, zbl = {0472.17006}, language = {en}, url = {http://www.numdam.org/item/SB_1980-1981__23__258_0/} }
TY - CHAP AU - MacDonald, I. G. TI - Affine Lie algebras and modular forms BT - Séminaire Bourbaki : vol. 1980/81, exposés 561-578 AU - Collectif T3 - Séminaire Bourbaki N1 - talk:577 PY - 1981 SP - 258 EP - 276 IS - 23 PB - Springer-Verlag UR - http://www.numdam.org/item/SB_1980-1981__23__258_0/ LA - en ID - SB_1980-1981__23__258_0 ER -
%0 Book Section %A MacDonald, I. G. %T Affine Lie algebras and modular forms %B Séminaire Bourbaki : vol. 1980/81, exposés 561-578 %A Collectif %S Séminaire Bourbaki %Z talk:577 %D 1981 %P 258-276 %N 23 %I Springer-Verlag %U http://www.numdam.org/item/SB_1980-1981__23__258_0/ %G en %F SB_1980-1981__23__258_0
MacDonald, I. G. Affine Lie algebras and modular forms, in Séminaire Bourbaki : vol. 1980/81, exposés 561-578, Séminaire Bourbaki, no. 23 (1981), Talk no. 577, 19 p. http://www.numdam.org/item/SB_1980-1981__23__258_0/
[1] Completely integrable systems, Kac-Moody Lie algebras and curves, Adv.in Math. 36(1980) 1-44.
and ,[2] Linearisation of Hamiltonian systems, Jacobi varieties and representation theory, Adv. in Math. 38(1980) 318-379. | MR | Zbl
and ,[3] Monstrous moonshine, Bull. LMS 11(1979) 308-339. | MR | Zbl
and ,[4] Identités de Macdonald, Sém.Bourbaki 483 (1976). | Numdam | Zbl
,[5] The Weyl-Kac character formula and power series identities, Adv. in Math. 29(1978) 271-309. | MR | Zbl
and ,[6] Orbital theory for affine Lie algebras, Inv. Math. (to appear). | MR | Zbl
,[7] Basic representations of affine Lie algebras and dual resonance models, Inv. Math. 62(1980) 23-66. | MR | Zbl
and ,[8] Dedekind's n-function and the cohomology of infinite-dimensional Lie algebras, PNAS 72(1975) 2493-2495. | MR | Zbl
,[9] The arithmetic theory of loop groups, preprint. | MR
,[10] Lie algebra homology and the Macdonald-Kac formulas, Inv. Math. 34(1976) 37-76. | MR | Zbl
and ,[11] Simple irreducible graded Lie algebras of finite growth, Math. USSR Izvestiya 2(1968) 1271-1311. | MR | Zbl
,[12] Infinite-dimensional Lie algebras and Dedekind's n-function, Funct.Anal. Appl. 8(1974) 68-70. | MR | Zbl
,[13] Infinite-dimensional Lie algebras, Dedekind's n-function, classical Möbius formula and the very strange formula, Advances in Math. 30(1978) 85-136. | MR | Zbl
,[14] Infinite root systems, representations of graphs and invariant theory, Inv. Math. 56(1980) 57-92. | MR | Zbl
,[15] An elucidation of "Infinite-dimensional algebras ... and the very strange formula". E8(1) and the cube root of the modular invariant j. Advances in Math. 35(1980) 264-273. | MR | Zbl
,[16] Affine Lie algebras and Hecke modular forms, Bull. AMS (New Series) 3(1980) 1057-1061. | MR | Zbl
and ,[17] Infinite-dimensional Lie algebras, theta functions and modular forms, preprint. | MR
and ,[18] Realisation of the basic representations of the Euclidean Lie algebras, to appear. | Zbl
, , and ,[19] Macdonald-type identities, Adv. in Math. 27(1978) 230-234. | MR | Zbl
,[20] Generalised Verma modules, loop space cohomology and Macdonald-type identities, Ann. Scient. ENS (4e série) 12(1979) 169-234. | Numdam | MR | Zbl
,[21] A Lie-theoretic interpretation and proof of the Rogers-Ramanujan identities, preprint. | MR
and ,[22] Root systems and elliptic curves, Inv. Math. 38(1976) 17-32. | MR | Zbl
,[23] Affine root systems and Dedekind's n-function, Inv. Math. 15(1972) 92-143. | MR | Zbl
,[24] A new class of Lie algebras, J. Alg. 10(1968) 211-230. | MR | Zbl
,[25] Euclidean Lie algebras, Can. J. Math. 21(1969) 1432-1454. | MR | Zbl
,[26] Chevalley groups over C((t)) and deformations of simply elliptic singularities, RIMS Kyoto University, Japan, 1981. | MR
,