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Seminaire BOURBAKI

33e annee, 1980/81, n° 577 Juin 1981

AFFINE LIE ALGEBRAS AND MODULAR FORMS

I.G.MACDONALD

Introduction

This lecture is in some sense a sequel to that of Demazure [4], although its

point of view will be somewhat different.

Affine Lie algebras are particular examples of Lie algebras defined by Cartan

matrices, or Kac-Moody Lie algebras. These are infinite-dimensional complex Lie

algebras defined by generators and relations, for which there exists a satisfactory

structure theory and representation theory which mirrors precisely (and includes)

the classical theory of finite-dimensional complex semisimple Lie algebras, and

culminates in an analogue of Weyl’s character formula and denominator formula. In the

case of affine Lie algebras, these formulas can be made quite explicit, at any rate

for certain modules, and lead to formal identities for theta-functions and modular

forms. The simplest example is that of the trivial representation , which leads to

the so-called denominator formula; this is an identity between formal power series

in several variables, and can be specialised to give a large number of identities

for Dedekind’s n-function.

Apart from these connections with arithmetic and modular forms, which form the

subject of this lecture, it has become apparent in the last few years that affine

Lie algebras have connections with many other areas of mathematics; combinatorics

(partitions, Rogers-Ramanujan identities) [5, 211]; topology (loop spaces and loop

groups) [8,9,20~; linear algebra (representations of quivers) [14]; singularities

[26]; completely integrable systems [1,2] and the structures of mechanics and

particle physics [6,7]. There appear also to be tantalising but as yet little



understood connections with the "Monster" simple group C3,I5]. The range of these

applications, all of which are in a stage of active development, continues to increase

at an alarming rate.

1. Finite-dimensional simple Lie algebras

In order to set the scene, we shall briefly review some of the salient facts

about a finite-dimensional complex simple Lie algebra g. Let h be a Cartan

subalgebra of g (i.e., a maximal abelian diagonalizable subalgebra); let h*

be the dual of h, and t the dimension of h. There exists a non-degenerate

symmetric bilinear form (x, y) on g which is invariant, i.e.,

([x, z], y) = (x, [z, y]) for all x, y, z E g, for example the Killing form

tr(ad(x)ad(y~~..The restriction of this form to h is non-degenerate and hence

determines a symmetric bilinear form (a, ~) on h*.

Root system. For each a E h* let ga denote the set of x E g such that

[h, x] = a(h)x for all h E h. Then g = h, and the non-zero a E h* such that

g ~ 0 are the roots of g relative to h. They form a finite subset R of h*,

called the root system of (g, h). We have

(1. 1) g - _h+ ~ g~ 

aeR 
~’

and each g~ is 1-dimensional. For each a E R, the only roots proportional to

a are ±a. The bilinear form on g may be chosen so that (a~2 - (a, a) is

real and positive for each a E R.

It is possible to choose roots al, ..., at E R such that each root a E R

is of the form a = Ln.a. with integer coefficients n., which are either all

~ 0 (positive roots) or 0 (negative roots). The ai are called a set

of simple roots or a basis of R, and we shall assume that they have been chosen

once and for all. There is then a unique highest root, for which Eni is a maximum.

Weyl group. For each a E R, let wa denote the reflection in the hyperplane

orthogonal to a in h*. We have



wa(~) - ?~-(a~~ a)a (a E h)

where 03B1v = 2a/(a, a) is the coroot of a. The reflections w 
a. * 

corresponding to

the simple roots generate a finite group of isometries of h* called the Weyl group

W of g relative to h. Each reflection wa belongs to W; the root system R is

stable under W, and each root is of the form wai for some w E W and some simple

root a..
i

Cartan matrix. The numbers ai. - aj) are integers, and the  ~ ~, matrix

A - (aij) is called the Cartan matrix of g. It satisfies the following conditions:

(C1) aii - 2 for all i; aij - 0 if i ~ j ; aij - 0 whenever a.. i - 0.

(C2) All the principal minors of A are > 0.

Generators and relations. The Cartan matrix A determines g up to isomorphism.

Choose generators el of g~. , fi of g~. (1 _ i s k) such that (ei, fi) - 1,
JL .L ~~ 

* 1 

and elements h such that (hi, h) - ai (h) , so that aj (hi) - (ai, aj ) - aij .
Then the 3Q elements ei, fi, hi generate g subject to the following relations:

Modules with highest weight. Let Q (resp. Q+) denote the set of all with

n. ~ Z (resp. N), and let P (resp. P ) denote the set of all 03BB E h* such that

X(h.) ~ Z (resp. N) for 1 ~ i _ A. We have Q c P (but P+) ’

If V is a g-module and X E h*, let V~ denote the set of v E V such that

h.v = X(h)v for all h E h. If V~ ~ 0, À is said to be a weight of V with

multiplicity dim(V~). If V is finite-dimensional, then V is the direct sum of

its weight spaces, and all the weights of V lie in the lattice P. 
’



For each À E P~ there exists a unique finite-dimensional simple g-module

V(À) generated by an element E such that 0 (1 f i ~ ~) .

The set of weights of is stable under W, and is contained in ~-Q+, and

À (the highest weight) has multiplicity 1.

In particular, V(0) is the trivial 1-dimensional g-module.

Character formula. In the group ring Z[PI] of the free abelian group P, let

e~ denote the element corresponding to A, so that = 
. The character

of a finite-dimensional g-module V is defined to be

summed over the weights of V .

Let p E h* be defined by p(h.) = 1 (1 _ i _ ~) . Then for ~ E P~ we

have the character formula (of H Weyl)

When À = 0, ch V(À) = 1 and hence (1.3) becomes the denominator formula

Using (1.4) we can rewrite (1.3) as

2. Kac-Moody Lie algebras C10,11,12,1~,24~

Let A = (a..).. E I 
be any (finite) matrix of integers satisfying (Cl), and

let g’ = g’(A) denote the complex Lie algebra generated by elements

ei, fi, hi (i e I) subject to the relations (1.2). Unless A is of finite type

(i.e., satisfies (C2)), the algebra g’(A) will be infinite-dimensional. The h.



are linearly independent in g’, and generate a Cartan subalgebra h’ of g’.

Following the pattern of the finite-dimensional case, we should define simple

roots a. E h’ * by the relations a. (h.) = a.. (i, j E I). However, it may happen

that det(A) = 0, in which case the a. J so defined will be linearly dependent.

This inconvenience may be avoided by enlarging g’ as follows. Let d denote the

space of derivations of g’ generated by d. (i E I), where d.(e.) = 6..e.,
d.(f.) = -6..f.; define § : h’ ~ d by 03C6(hi) = ad h. = Ea.. d., and let d

be any subspace of do supplementary to })(h’) (so that dim d = corank A). Up to

isomorphism, the semidirect product g = g’ ® d does not depend on the choice of

d, and is the Kac-Moody Lie algebra defined by the Cartan matrix A. The subspace

h = h’ ~ d is a Cartan subalgebra of g, and the centre c consists of all

h = Za.h. E h’ such that E a.a.. = 0 for all j i E I, so that dim c = corank A.

The matrix A is said to be indecomposable if there does not exist a partition

of I into non-empty disjoint subsets J, K such that ajk = 0 for all

(j, k) E J x K; and symmetrizable if there exists a nonsingular diagonal matrix D

such that DA is symmetric. Symmetrizability is a necessary and sufficient

condition for the existence of a non-degenerate invariant symmetric bilinear form

(x, y) on g. We shall assume these conditions satisfied from now on, and that the

bilinear form has been chosen so that (h., h.) is real and > 0 for all i E I.

Just as in the finite-dimensional case, the restriction of (x, y) to h is nondegen-

erate, and hence determines a symmetric bilinear form (a, u) on h*.

After these preliminaries, all the features of the finite-dimensional case

pointed out in §1 have their counterparts in this more general setting.

Root system. The root system R of g (relative to h) is defined exactly as

in §1, but is now an infinite subset of h* (unless A is of finite type). The

decomposition (1.1) of g remains valid, and each g~ is finite-dimensional, but

no longer necessarily of dimension 1, so that each root a E R has a multiplicity

m(a) = dim 1. The simple roots a. 
i 

(i E I) are defined by [h, e.] = a.(h)e. 
1



for all h E h, so that a.(h.) = a..; they are linearly independent and have

multiplicity 1, and they form a basis of R in the sense of §1. So we have the

notions of positive roots and negative roots (but no highest root)..

For each root a, the number (a, a) is real, and is > 0 for each simple

root a.. However, it is no longer true that (a, a) > 0 for all roots a (unless

A is of finite type). The roots a E R for which (a, a) > 0 are called real

roots, and have multiplicity 1; those for which (a, a) ~ 0 are called imaginary

roots, and may have multiplicity > 1. If a is real, the only roots proportional

to a are ±a; if a is imaginary, then na is a root for all non zero integers n.

Weyl group. Just as before, the Weyl group W is defined to be the group of

isometries of h* generated by the reflections w 

"i 
(i E I), and contains w 

" 

’

for each real root a. The set of real roots, the set of positive imaginary roots

and the set of negative imaginary roots are each stable under W, and a root

a E R is real if and only if it is of the form wai for some w E W and i E I.

Modules with highest weight. Define P, P , Q, Q as in §l. For each À E P
there exists a unique simple (in general infinite-dimensional)

g-module V(A) generated by an element v~ E V(À)À such that eivÀ = 0 (i E I).

All the weight spaces are finite-dimensional, and V(À) is their direct sum;

the set of weights of V(À) is stable under W, and is contained in a-Q+. The

highest weight A has multiplicity 1. The character

ch V(1) - ~ u
summed over the weights of is now an infinite sum of formal exponentials, such

that e _ ~ch V(À) lies in the formal power series ring generated by the e 
-a. 1 

(i E I).

Define p E h* by p(h.) = 1 (i E I), p~d - 0. Then the character formula

(of V Kac) states that, for all A E P ,



When X = 0, ch V(X) = 1 and we have the denominator formula

and hence also

3. Affine Lie algebras [7,11,13,25]

The root system of a Kac-Moody Lie algebra is in general a rather elusive

object, and at present no method is known for systematically listing the roots and

their multiplicities. However, there is one class of infinite-dimensional

Kac-Moody algebras, the affine Lie algebras, for which the root system can be

explicitly described and hence the character formula (2.1) and denominator formula

(2.2) exploited to produce explicit identities.

Affine Lie algebras can be characterised in various ways: as the infinite-

dimensional Kac-Moody algebras for which all roots a satisfy (a, a) ? 0, or

equivalently as those defined by affine Cartan matrices, i.e., matrices A which

satisfy (Cl) and

(C2’) det (A) = 0, and all proper principal minors of A are > 0.

Let R be an irreducible finite root system, ai, ..., a a basis of R,

and let -a be the highest root relative to this basis. Let a.. = (ai, a.).
Then the matrix A = (aij)0 ~ i, j ~ l is an affine Cartan matrix, and therefore

so also is its transpose tA; and these are all the affine Cartan matrices.

-

For A as above, where R is the root system of a finite-dimensional simple

Lie algebra g as in §1, the affine Lie algebra g(A) may be constructed as

follows. Let L = C[t, be the ring of Laurent polynomials in one variable,

and form L(g) = g. This is an infinite-dimensional Lie algebra, which may

be identified with the Lie algebra of polynomial maps C* ~ g (the element



of L(g) corresponding to the mapping z ~ 03A3zixi). For

x = y = define (x, y) = Z ti+j(xj, y.) E L, and let

(x, y) denote the constant term in (x, y) . Then (x, y) is an invariant

bilinear tone on L(g) .

~/

This algebra L(g) is in fact isomorphic to g’(A) modulo its (1-dimensional)
~ 

r~

centre c. To construct g’(A) from L(g) we must therefore construct a

1-dimensional central extension, which we do as follows. The function on L(g)

03C8(x, y) = Res (dx/dt, y) t may be verified to be a 2-cocycle with values in C,

hence determines a central extension L(g) of L(g), and is isomorphic
, 

~

to g’(A). Explicitly, L(g) = where c_ = Cc, and the

multiplication is given by [x+Xc, y+pc] = Ex, y)c (x, y e L(g); 03BB, p e C).

~~ r~

The affine Lie algebra G = g(A) is then obtained by adjoining to L(g) a

derivation d which acts on L(g) as td/dt and which kills c. In other words,
r~

G ~ L(g) $ d, where d = Cd and the multiplication is given by

[x+Xd, y+pd] = [x, y]+Xdy-pdx (x, y e ~, p e C).

Not all the affine Lie algebras are constructed in this way (about half of

them are). The remainder are obtained by a variant of the construction above,

in which one starts with a simple Lie algebra g as above and a graph automorphism

o of g, of order say k (so that k = 1, 2 or 3). Let M be a primitive kth

root of unity, and for each n e Z let g be the set of x E g such that

o(x) = (so that g depends only on n modulo k). In place of L(g) we
2014 2014n 2014**

form L(g, o) =  tn ~ gn , and the rest of the construction is unaltered. If g

is of type X, where X is one of the symbols A , B , ..., G~, the affine Lie
n n 

algebra so constructed is said to be of type 

For simplicity of exposition, we shall concentrate on the affine Lie algebras
r~

G. = g.(A), for which k = 1 (i.e., o) = L(g)).



Root system. It will be convenient to normalise the bilinear form (x, y) on g

so that ~a ~ ~ = 2 (where -a o is the highest root). We then define the standard

invariant bilinear form (X, Y) on G = L(g) e c ® d as follows : if

X = x+ac+ud, Y = (x, y e L(g); ~~ u~ a’~ p’ e C), then

(X, Y) = { ~ 

We shall identify g with the subalgebra 1 0 g of G. Then H = h. e c ® d

is a Cartan subalgebra of G. The restriction of (X, Y) to H is nondegenerate,

hence defines an isomorphism w : : H -~ H* and a bilinear form (a, ~~c) on H*.

Each ~ E h* we regard as a linear form on H by setting a{c) - X(d) = 0.

Let y = w(d) , 6 = c~ {c) . Then ~r {c) - ~ (d) - 1 and y(d) = 6(c) = 0, and

H* = h* ® 

We have

where n e Z and a E R u ~0~, the pair (0, 0) being excluded. Since d acts

on g~ as multiplication by n, it follows that the roots of G relative to

H are n6+a (n E Z, a e R) and n6 (n e 0). We have (n6+a, n6+a) = (a, a) > 0,

so that the n6+a are real roots, and the n6 (n ~ 0) are imaginary roots (since

(6, 6) = 0), each of multiplicity ~.

Let S denote the root system of G relative to H. The simple roots are

ai - ai (1 _ ~,) and a = 8+ao . Since (a o 2 - 2 we have ao - 
We have hi - ( i) (1 _ i _ Q) , and we define h = 03C9-1(avo) E H. The positive

roots a E. S are

(3. 1) (n-1)6+a, n6-a, n6 (n > I, a e R+) .

Weyl group. Let W denote the Weyl group of G, generated by the reflections

wa. [© _ i _ k) in H*. Since (a. , 8) - 0 for all i, we see that W’ fixes
i - i



-

6. We can realise W as an "affine Weyl group" as follows. First, the action of

W on H* may be transported to H by means of the isomorphism w; it fixes c

and hence acts on the real vector space V = where H ~ is generated by

hI’ ..., h~, c, d. Since 6(c) = 0, 6 may be regarded as a real linear form on

V, and it is easily verified that each affine hyperplane 6 = constant in V is

stable under W. In particular, let E denote the hyperplane 6 = 1 in V; the

roots a E S may be regarded as linear functions on V, hence as affine-linear

N

functions on E; and W acts faithfully on E as an affine Weyl group, generated by

the reflections in the hyperplanes a.(x) = 0 (0 _ i _ Q) in E, as in C231.

For each real root a = w o w is the composition of reflections in two

parellel hyperplanes in E, hence is a translation, namely x + The

/~

subgroup of W which fixes the point x E E defined by a.(x ) = 0 (1 s i  l)

may be identified with the (finite) Weyl group W of g, and W is the semidirect

product of W with the translation subgroup T, isomorphic to the lattice

t

M = E Za.. For each p E M let t E T denote the corresponding translation, so

i=l ~ ~

that t (x) = on E. Then the action of t on H* is given by the formula
V V -

(3. 2) t u (v) = o 1 2n (|v|2 - |vo+n |2)03B4
where n = (v, 0 and v° is the projection of v E H* on h*.

- -

Modules with highest weight. Let P (resp. P+) denote the set of 03BB E H* such

that X(h.) E Z (resp. N) for 0 - i  t, and for each À E P let denote

the simple G-module with highest weight À, as in §2. The set of weights of V(03BB)

is a W-stable subset of P, and weights congruent under W have the same

multiplicity. If p is a weight, so is p-n6 for all integers n ? 0, so that the

weights are distributed into "strings".

A weight p of V(x) is said to be maximal if p+6 is not a weight. For

example, x is a maximal weight. The set Max(x) of maximal weights is stable



,’V - /~/

under W (since W fixes 6) and is the union of a finite number of W-orbits.

For each weight u there exists a unique integer n ? 0 such that u+ns is maximal.

The central element c acts on as multiplication by the positive integer

m = ~(c) - (X, 6), called the level of X. We have u(c) - m for all weights

p of V(X), and m = 0 if and only if a - 0. 
’

Character formula. In §2 we regarded the e~ as formal exponentials. From now on

we shall regard them as functions on H, defined by e (h) = 

Let H + denote the set of h e H such that 6(h) lies in the upper half-plane

yr = (x+iy e C : y > 0}. For each X e P , the character of V(A) and the series

converge absolutely for all h E H , and define holomorphic functions on this

half-space. (Define p E H* by (p, a.) = 1 (0 s i _ Q) , p (d) - (p, y) = 0.) Then

the character formula (2.3) takes the form

(3.3) ch V(À) = J(À+p)/J(p)

as an identity between holomorphic functions on H . The denominator formula

(2.2) takes the form

(3.4) J(p) = (1-qn _ le _ a) (1-qnea)
n=1 a>0

where q = e ~, in view of the description (3.1) of the positive roots.

4. Specialisations of the denominator formula [13,15,19,20,23]

We recall that Dedekind’s n-function is



where q = exp 203C0i03C4 and T 

Let a be an automorphism of finite order m of the simple Lie algebra g.

Assume that the characteristic polynomial det(X-o) has integer coefficients; then

it is a product of cyclotomic polynomials, hence can be expressed uniquely in the

form

where each e. is ±1, the m. divide m, and LE.m. = dim g. Each such a leads
i 

’ 

i 
’ 

ii -

to two n-function identities (which may coincide): the first gives a power series

expansion of TIn(m.T) E. 1 and the second a power series expansion of 1T) 
E. 

1.

In the particular case that Q is an inner automorphism Ad(exp 203C0ih) where

h E h, the first identity is obtained by evaluating both sides of the denominator

formula (3.4) at h+Td, and the second by evaluation at Th+Td.

The simplest case is that in which a is the identity. Then both identities

coincide and express as a power series in q. When g = sl(2, C), this

is the formula of Gauss and Jacobi for n (1-qn)3.
n=1

Another example is obtained by taking h to be the element of h defined by

03B1i(h) = 1 (1 ~ i ~ l). Then the characteristic polynomial of a = Ad(exp 203C0ih)

is (where m=l + Coxeter number of g); again the two identities coincide

and express as a power series in q. When g = sl(2, C), this is Euler’s

expansion of TI(1-qn) ("pentagonal number theorem").

5. Theta functions and string functions

The numerator and denominator of the character formula (3.3) can be expressed

as alternating sums of theta functions, by summing first over the translation subgroup

T of Wand then over the finite Weyl group W. For each v E P, let v E P be

the projection of v on h*. If v E P is such that (v, 6) = n > 0, it follows

from (3.2) that



where for any p E P and any positive integer m

The series (5.1) and (5.2) converge absolutely on H , and ® 
P ~ "* 

is a classical

theta function, which depends only on u modulo mM. Using (5.1) we calculate

that for 03BB E P+

where m = X(c) is the level of À (and is a nonnegative integer) and g = p(c).

Hence we obtain

(Incidentally, |03C1|2/2g = 1/p (c) is equal to ---.- dim g by the "strange formula".)

The formula (5.3) resembles Weyl’s character formula (1.5), except that the exponentials

are replaced by theta-functions.

We shall next derive another expression for the character ch V(X).

If dim is the multiplicity of the weight p, we have



since the weights y-n6 and t(u-ns) - have the same multiplicity.

Using (5.1) we obtain

The are called string functions : they are functions of T = 8(h), holomorphic
o

on the upper half-plane H . If v E P is not the projection on h* of any weight

of V ( 1) , set = 0. Then is defined for al l v E P, and = c03BBw(03BD) for

w E W x mM. From (5.3) and (5.4) it follows that

The theta-functions 
m 

on the right-hand side of (5.6) are linearly

independent, and hence the string functions c are uniquely determined by (5.6).

The transformation law for theta functions then gives rise to a transformation law

for the string functions which expresses as a linear combination of the

c , (T), where X’ runs through the elements of level m in P , and v’ through

P mod mM. From this it follows that is a cusp form of weight

for the group r(Nm) n r(N(m+g)), where N is the least positive integer such



that e Z for all u E P. These facts make it possible in principle to

compute the string functions for any highest weight module V(À).

6. Examples

(a) The basic representation [7,16,17,18]. Kac and Peterson in give many examples

in which the string functions are explicitly determined (as linear combinations of

products of n-functions). Here we shall consider only the simplest case. Suppose

that all roots a E R have the same length (so that R is of type A, D or E).

Define the fundamental weights 03BBi by X.(h.) = 6.., 03BBi(d) = 0 (so that X = y).

Then all X e P of level À (c) = 1 are conjugate to y under automorphisms of

the set S of positive roots of G. The maximal weights of the "basic representation"

V = V(y) form a single orbit W.y, hence all string functions c v for À of level 1

are equal. This common string function c(T) is of the form

where q = and ao = 1. Hence n (T) ~c (T) is SL (Z) -invariant, holomorphic
and equal to 1 at i°o ; hence is identically 1, i.e., C(T) = ~. . The

character of V is therefore

where 03C6(X) = IT (1-X)., The simplicity of this formula suggests that there should
n=1

be a simple explicit construction of the G-module V; such a construction has

recently been found by Frenkel and Kac [7J and displays remarkable connections with

certain notions (vertex operators, dual resonance models) of particle physics.

(b) Moonshine [3,15J. As in (a), let g be of type A, D or E and let V

denote the basic representation of G. For each integer n z 0 let V denote the

subspace of V on which d acts as multiplication by -n, so that V is the

sum of the weight spaces V for which (d) = -n. Each Vn is a finite-dimensional



g-module, so that V = 

o 
V may be regarded as a graded g-module. From

(6.1) it follows that the Poincare series of V as graded g-module is

where q = and e(M, q) = ) q| |2/2 is the theta-series of the lattice M

yEM 
’

(which here is the root lattice Q, since a = a~ for all a e R). In the case

Where g iS Of tYPe E~ We Obtain

where j(q) = q 1+744+I9b884q+ ... is the modular invariant, by known properties

of j.

In [3] Conway and Norton conjecture that there should exist a graded module

H - ~ H for the Monster simple group such that

and more generally such that for each element Q the "Thompson series"

is the normalised generator of a function field of genus zero arising from a

certain subgroup of They also conjecture the following relationship between

the Leech lattice L and the Monster group M. For each automorphism J of L,

let L~ the sublattice of L fixed by a and let 0(Lo, q) be its theta-series.

Then there should exist an element o such that

In [15J Kac shows that an analogue of (6.2), with the Leech lattice L replaced

by the root lattice M, and the Conway group by the Weyl group W, is in fact true.



Let G be the simply-connected complex Lie group with g as Lie algebra. Then the

action of g on each Vn can be "integrated" to a G-action. Each element o E W

of order m can be lifted to an element ? E G of order 2m, and Kac shows that

in perfect analogy with the conjecture (6.2).

(c) Rogers-Ramanujan Let r = E H, and let T E if (the upper half

plane). For any a E P we have

which by’the denominator formula (2.2) factorises:

where q = e 
203C0i03C4

. Hence

We shall apply this formula when g = sl(2, C) and X has level 3~ so that (up to

automorphisms) À = 303BBo or 2xo + Àl. Since + 03BB1 the product in (6.2) is

easily calculated; we find

when X = and

when ~ - 2A + Now, apart from the factor n ~1_q2n-1)-1~ ~ the right-hand
n=l

sides of (6.4) and (6.5) feature in the Rogers-Ramanujan identities
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The product sides of various generalisations of these identities can also be

interpreted in the same way, for suitable choices of the highest weight X. This

suggests that it should be possible to prove (6.6) and (6.7) (and their generalisations)

by a construction and analysis of the modules V(À); and such a proof has recently

been found by Lepowsky and Wilson [21].
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