A dilation theorem for operators on Banach spaces
Colloque d'analyse fonctionnelle (Bordeaux, 1971), Mémoires de la Société Mathématique de France no. 31-32  (1972), p. 365-373
@incollection{MSMF_1972__31-32__365_0,
     author = {Stroescu, Elena},
     title = {A dilation theorem for operators on Banach spaces},
     booktitle = {Colloque d'analyse fonctionnelle (Bordeaux, 1971)},
     author = {Collectif},
     series = {M\'emoires de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {31-32},
     year = {1972},
     pages = {365-373},
     zbl = {0247.47004},
     mrnumber = {51 \#13755},
     language = {fr},
     url = {http://www.numdam.org/item/MSMF_1972__31-32__365_0}
}
Stroescu, Elena. A dilation theorem for operators on Banach spaces, in Colloque d'analyse fonctionnelle (Bordeaux, 1971), Mémoires de la Société Mathématique de France, no. 31-32 (1972), pp. 365-373. doi : 10.24033/msmf.103. http://www.numdam.org/item/MSMF_1972__31-32__365_0/

[1] Colojoara (I.) and Foias (C.). - Theory of generalized spectral operators. Gordon and Breach Sci. Publ. New-York, (1969).

[2] Halmos (P. R.). - A Hilbert space problem book. D. Van Nostrand Company, Inc., Princeton, (1967). | MR 34 #8178 | Zbl 0144.38704

[3] Hoffman (K.). - Banach spaces of analytic functions. Prentice-Hall, Inc., Englewood Cliffs, (1962). | MR 24 #A2844 | Zbl 0117.34001

[4] Ionescu Tulcea (C.). - Scalar dilations and scalar extensions of operators on Banach spaces (I). J. Math. Mech., 14 (1965), 841-865. | MR 32 #1561 | Zbl 0138.39203

[5] Ionescu Tulcea (C.) et Plafker (S.). - Dilatations et extensions scalaires sur les espaces de Banach. C. R. Acad. Sci. Paris, 265 (1967), 734-735. | MR 37 #5700 | Zbl 0177.41103

[6] Nagy (B. Sz.). - Appendix to "Leçons d'Analyse Fonctionnelle" by F. Riesz and B. Sz Nagy, Paris, (1965), 439-473.

[7] Stinespring (W. F.). - Positive functions on C*-algebras. Proc. Amer. Math. Soc. 6, (1955), 211-216. | MR 16,1033b | Zbl 0064.36703

[8] Stroescu (E.). - µ-scalar dilations and µ-scalar extensions of operators on Banach spaces. Rev. Roum. Math. Pures et Appl., XIV, N° 4 (1969), 567-572. | MR 40 #4793 | Zbl 0186.45401

[9] Stroescu (E.). - a-spectral dilations for operators on Banach spaces. (to appear in Journal of Math. Anal. and Appl.). | Zbl 0242.47014