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A DILAFION THEOREM FOR OPERATORS ON BANACH SPACES
ŷ

Elena STROESCU

Introduction.

Let R be the set of all non-negative real numbers and IB (? ) the

Banach algebra of all linear bounded operators on a Banach space ? . In this pa-
per, we present a dilation theorem by which an object [7 , r , U} dilates into

{ ^ , Cp , P , ? , V} ; where J and 7 are Banach spaces,cpis a bicontinuous iso-

morphism of y into X , P a continuous projection of 9£ onto cp( y ) ,

r = ^T t^ / :R+ c: ^^ ) and ? = ^f\c R+ C : ! B ( x ) are operator semi-groups, U is

a IB( X )-valued linear map on an arbitrary algebra 0 estimated by a submultipli-

cative functional and V a B( ?)-valued representation on Q such that
~ •<* +

V T, = T, V , for every aC 0 and t € R . This theorem is an extension ofa "c t &
some previous results (see [8] , [9]) » it has arisen from the concern to characte-
rize restrictions of spectral operators on invariant subspaces (or operators which
dilate in spectral operators) by a map replacing the spectral representation.

Notations. -

Throughout the following C denotes the complex plane , N = {0,1,2,. . .};

0 an arbitrary algebra over C with unit element denoted by 1 ; K a submul-
tiplicative functional of G into R (i.e. K <K K- for any a , b C G ) suchao a b
that K = 1 ; X a Banach space over C ; fll( 2 ) the Banach algebra of all li-

near bounded operators on X over C ; I the identity operator. Let T, ,
Tp€ IB( X ) two commuting operators ; then one says that T- is quasi-nilpotent

equivalent with T^ and denotes T ~ T , if lim [|(T - T )^\\ 1/11 = 0 . A family
n-x»

of operators {T, } - + c:R( 3 0 ) is called semi-group if T- = I and T, = T ,T
"C tt -TV U u 's t S

for any t and s 6 R •

THEOREM. - Let {T, } p+ c: fii ( 2 ) be a semi-group of operators and U : G ^ (B ( X )

a linear map such that U = I , ||u || ^K , for any a € CZ .

Then, there exists a Banach space X , an isometric isomorphism cp of

Hi into X , a continuous projection P of S, onto Cp( I ) , a semi-group

r = { T , } , ^ + <~ R( X ) and a representation V : Q ->- Hi ( f ) such that :
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(°) IMI = 1 ; ||Tj[ =||Tj| . for any 1C ̂  ; V^ = I and
l|vj[ < K^ , for any a€0 .

(i) V^ = T^ . for any a € 0 , T € R'1' .

(ii) PT .̂ V^ cp(x) = cp (T^x) , for any aCO , T C R'1' , x ^ X •

(iii) ? is the closed vector space spanned by { ? V cp(x);aCCl, te K ,x 6 ^}*

(iv) Let s €R ; then we have the following equivalences :

1° T Cp(x) = cp(T x) , for any x 6 ^ ;
«
2° pTJ^ Cp(x) = T^ cp(x) , for any a € Q , x € X ;

30 Vs = Va ' for any a € G •

(v) Let b 6 G ; then V^ cp(x) = cp (U^x) , for any x 6 X is equivalent

with U - = U U, , for any a 6 G .ao a D

(vi) Let CT^ R and @ 6 0 commuting with all the elements of G such

that ^8 = Ve ' Va = Va ' for any a" ' then II ̂ a- ̂ ^ll =

|| (T^ - Ug)11!! , for every n€ N .

Proof : A) Let us consider the Cartesian product 2 R xa = TT X '
( t , a )€ R^O

^R4'^ (7 ^ Y^ '^ /^. \
and the direct sum ^L{ ) = © x , where X^'B^ X , for

(t,a)6 R^ 0

every t € R'1' , a 60 . An element yC^ x is a family (y ) - . ^+ n"c 5 a. ^ t ^ a / ^ R xu<

(many times we write y = (y ) ) of components (yl, N = y, ^ ̂  » tor everyT;,a ^ ,a ^t,a; t ,a *•

t €R + , a€0 . If y€^ ""^ £ R xa , then (y) - y. ^ 0 for only a finiteT. ,a T; ,a
number of elements ( tsa^R'^ 'xQ .

Let us consider a map :

^^•^ ^.- a ot £ (B+XO) into XR+xa
( t ,a)6 R x Q

defined by

® y = ( T ^ £ ^ab^t.a • ^ every y C X ^ " 5 .
S ,D

It is easy to see that © is a well defined linear map. Then, we denote by S

the range of ® and by y an arbitrary element of X .
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For every y6 3£ , we have :

©^({y} ) = {yCX^^ ; © y = y) .

We define a function (D : I -^ R'1' by d)(y) = inf E || T || K,|| y [| ,
ye®-1^)}) s.b s L) S9b

for every y$ ? ; let us prove that 03 is a norm on 2 . Let p € C be non-zero,

y ^ S and A ( p y ) = {py ; y € © ~ ( { y } ) ; then we show that ©~ ( { p y } ) = A ( p y ) . In-

deed, let y y 6 A ( p y ) , i.e. yGQ^^y}) , then py = (pT E T U y ) = © py ," , s a o s , D * c , as ,b
hence v y ^ © ~ ( { p y } ) . Let now z ^ © ~ ( { u y } ) , i.e. @z = py or © •z- = y , hence

y* = z e @ ( { y } ) and z = py1 € A ( p y ) . Then o)(py) = inf Z || T || K - | [ z ||
z€©'" ( { u y } ) s s'

= inf E ||Tj| K^l l z^||= inf E || rj K^ || py || =
z € A ( p y ) s.-b s D S 'D y€©- l ({y}) s ,1) s b S9b

= M ^ ^ I I T || 1C || y || = I p | o)(y) , i.e. o)(py) = [ p i ^ y ) ;yee^dy)) s.b s D sib

whence one deduces also that o)(o)= 0 . Then, for p = 0 we have o)(0y) = 0 and

Oo)(y) = 0 , for any y€ £ • Hence o)(py) = l v | o ) ( y ) , for any y€ X , u € C .

Let y1 , y2^ and

A(y1 + y2) = {yV ; y1 C®-1^^1}). y2 ̂ ({y2})},

then obviously we have ACy^ y )c:©~ l({y l+ y }) and

. (y^y 2 ) ' i^ , S H T J I ^ H z || <
z6® -l-^y-l-+ y ) s,b '

'^y2) s^l^l l^"2-"

^^(^n. y^-Ky2)) ^J'̂ 'l̂ s2^

< inf £ ] |T | |^ | |y 1 | |+inf S || T || K.|| y2 1 |
y^®"1^1}) s,b s c s'1 y^®-1^2}) s,b s b S 'D

i..e. (y^ y2) ^ a)(yl)+ u(y2) , for all y1 , y^ £ .

Then, from the definition of u , for every y63E , we have :

1) u(y) < S II fs II ̂  II YS b , tor any ye®"1^}) and
s ,t)

2) 11^^11^11^ II KaM(y) ' for t € R + • a6a •

Hence iii is a norm on 3E ; we denote by ^ the til-completion of X and the norm
on 3£ also by (D .
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B) We define an isomorphism cp of 1 into ^R x a by cp(x)=(T U x) =
" a , "fc ,a.

° (T* E Yah ^os Îb x)t,a 6i • for ̂ ^ x" •s ,b

Applying l) and 2) we get

3) | [ x | [ < o)( c p ( x ) ) < || x|[ , for any x € X .

Therefore cp is an isometric isomorphism of 3£ into i .

We define a projection P of 3£ onto cp( 3b ) , by Py = cp(y ) for

every y^X . Applying 3) and 2). we get o)(Py) = o)( cp (y )) ̂  |[ y || <'o)(y) , i.e.
0 ,-L 0 ,1

U ) o)(Py) ^ o)(y) , for any y€ S . Hence, P can be extended by continuity

to a continuous projection of X onto cp ( X ) , that will be denoted by the same
symbol.

Let now T € R ; then for every y-C X we put

T T y = ( T t s!b ^'a^s^t.a^t ^T^y^)^ =

^t ^^ab^t.a = ^ = & € X .

where we denote s + T = a ; z^ = y^ ^ for o^ T and ^ -b= 0 , for O^CT<T ,
with b € 0 .

We see easily that T^. is a well defined linear map of X into X .
Let us prove that also it is continuous.

For every y^ $ , denoting A( - r , y) = {^6 3E (R+X a ) ;̂ l = y ^
(7 ,b (7—T ,b

a ^ T and 3.̂  = 0 for O^o < T , b € G , yCQ'^y}) } , we see that

A(- r , y)c:(H)~ l({T y}) . Then, we have O)(T y) = inf z ||T H K - I I ^ 1 1 ^
T ^^©^({T^y}) a,b a b 0'b

^^) ^ 11^11^11 =^^)) ^"^^"^,.11

^e^y}) ^II^KII^.JI^II^II-W.-e.

5) "(T^ y) ^||T^|| h)(y) , for any y€3£ .

Thus, for every T € R"'" , T^. can be extended by continuity to an element

of e( i) , that will be denoted by the same symbol. Then, we see easily that

PT^cp(x) = cp(T x) , for any x 6 X .
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Hence || T^ x| [ = o)( Cp(T^ x) ) = o)(PT^Cp(x)) ^ o^ cp (x) )< ||Tj| o ) ( c p ( x ) ) =|| T || | |x|[ .
i.e.

6) [|T^ x | |<| |T^| | ||x|| , for any x€ Hi . At last, we see easily that

^T^TCR'1 ' is a semi~SrouP of operators, that we denote "by ? .

C) Let us define a representation V . Let a€ Q ; then for every y 6 X
we put

\Y-^ ^s^sA^^ ^ac ,1, .s .̂a =

c

° ^t E ^"ac Vc^a- ©"^X , where
s ,c

Q' = {hG a ; ab = c} and u = Z y , for s€ R'1' , G€ Q .
s 'c bCQ^ s ^ u

The map V^ : X -^ I is well defined. Indeed, let y1 = y2^$ ; then there exists

y1 , y^X^ x such that y1 = © y1 and y2 = ©y2 , hence

\ \ ̂  ̂  ̂ .b = ̂  £ ^ ^b .̂b • for ̂  ^R+ ' a€a •s , D s ,b

Then, T^ Z T^ U^^ y^^ T^ E ^ U^,^ y^^ .for tg R+ and a ' = a a 6 Q
S , D S ,D

with a € G . We see easily that for every a G O , V : i -^ X is a linear map and
v^ y = y , for any y € $ . Moreover. V : 0 -> £ ($ ) is a representation (see [U] ;

for a vector space X , £ (x) denotes the algebra of all linear maps of X into

X ) . Now, we prove that, V^ : 1 -> X is continuous, for every a6 G . Let a € Q ,

y € X and A(a , y) = {u€ 3£ ( R x a ) ; u = Z y yCQ^^y} ) } , then we see
S9C b€0 S9b

-1 c

A (a , y)c:©~ ({V y}) . Therefore, we have :

'"'•"•u^a,^,) .;, W V V.ll <

(̂.,,) .;. ll1-"^"--"^^,,,,, .I, ̂ ^^a ^^
c

%S^) s^ll^ll ̂ ^11^" ^(^) ^JI^KII.s.^^).

i.e. for every a € G we get

7) (i)(V^ y) < K^ o)(y) , for any y ^ X . Hence, V can be extended by

continuity to an element of B( f ) that will be denoted by V , for every a € Q .

24
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Thus, (0) is completely proved. The property (i) is immediate, since

for every a€ 0 and r € R , we have T V y = (T, Z T U , y , ) , =T a - t S+T aab •'s.b't^

= V T y , for any y61 • Using the definitions of cp , P , V and T , for

a € G , T ^ R 9 "we obtain immediately (ii), (iii) and (v).

D) Let us prove (iv). From T cp(x) = (T T U x), ands "c s a u ,a
Cp (T x) = (T, U T x), , we see that 1° and 3° are equivalent.s "c a s "c ,a

Now chosing a = 1 in 2° , and using PT cp(x) = cp(T x) for f6 R ,

x ^ X (see (ii)), we get 1°.

Conversely, taking into account of (ii) and writting 1° with U x ins-

tead of x , for a 60, we get 2° .

At last, we show (vi). Let a C R , and 6^(2, as in the assumption,

also let n^N and y6 3£ a then, we write :

(T - Vj°y = ? (-I)""" W ? V"-" y =
0 B k=0 a e

» ̂  (-1)^ W (T, ̂  T^ U^ ^ U^ y^)^ = ® v = ^X ,

where v is defined by

v^ = ? (-I)11-1' (^) T^U^ y^^ , for yeQ-1^}) , s^ R+ , and

b € G .

Denoting by A ( o , @ , n , y ) = the set of all element v so defined, we

see that :

A (o . & , n. y)c ©-^ - V^ y} }.

Then, we have :

O)((T - V )11 y) = inf E ||T || K. || v || <
a ^ vCQ-^ tT - V.^.y}) s.b " s" t)" s^"

a p

<^(,,.,n,,> .^"•^ll '••••-" •

-^«») ^'"•"^Jo (-l't'k f t )^ ̂  ̂ ll <

<|^ (-.,- ,;, ̂  ̂ 11 ^^^ ^1|T.I|K,||,.^| .
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n n , ,
= [ | Z (-1) (k) T" ̂  \\ o)(y) . Therefore, for every n€ N ,

k=0 p

we have ^((r^- V J11 y) ̂  || (T^- Ug)11!] ^(y) , tor any y€ $ ; hence

||(T^- V^ll <||(T^- U^)1 1 ! ] ' . Conversely, since (T^- V^ cp (x)= cp((T^ - U^)11 x) ,

for any x € 3 £ , we get easily ||(T^- V^H < || (T^ - U^H .

DEFINITION. - Let { X , r , U} be an object, where X is a Banach space,

r = {T } + cl3 ( I ) a semi-group of operators and U : Q -> IB (36 ) a linear map

as in the above theorem. Then, an object { X , cp , P , ? , V} where X is a
Banach space, cp a bicontinuous isomorphism of X into X , P a continuous pro-

jection of X onto Cp ( 3£ ) , r = ( T } - + < r B ( X ) a semi-group of operators and

V : a -^ (B(i ) a representation such that V - = I , V T = T V , for any

a € Q , T ^ R , is called an Q-spectral dilation of { X , r , U} if the property

(ii) is satisfyed. An Q-spectral dilation is called minimal if also we have (iii).

Remark 1. - When Q is a Michael algebra and U : G - ^ l B ( X ) a linear continuous
map, then K is the seminorm which estimates U •

Remark 2. - Let T € l R ( 3 £ ) ; then the above theorem is obviously true with

^nSN "stead of {^}^g+ .

ApplicatjLon. - Let ^ be an admissible algebra in the sense of [l] . Then, an

operator T6 lB( 3£ ) is called 'U -sub spectral (see [9]) if there is a Banach space
containing X as a closed sub space, a continuous projection P of 36 onto 3£ ,

a ^-spectral operator T € B( X ) having a ^-spectral representation V : Q ^ l8( 3£)
with the properties V Xc=X and PTV x = TPV x , for any f6^ , x 6 X , such
that T|^ = T .

We have the following characterization for ^(-subspectral operators : an

operator T ^ l6( 3£ ) is ^(-subspectral if and only if there is a linear map

U : ̂  -^ B( X ) with the properties :

(1) U^ = I ,

(2) ^z'^z '

(3) | [U^[ | < M L^. for any f^ ,

(where M is a positive constant and L : "U -^ lB( V ) , a linear map satisfying
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( j) HL || ^||L || ||L |[ , for any f, g€^< and the function

(j j) ^ -> L is analytic in ^supp f , for every f$^ ;

^ is a Banach space), such that TU = U T , for any f 6 ^ { and U ~T , (see [8]

and [9]).

If ^{ is an admissible topologic algebra with the topology of Michael

algebra, then the property (3) of U is replaced by its continuity.

For instance, let Y'= {z^ C ; | z ) = 1 } ; one denotes by L^(v)(p < °°)

the Banach space of the all complex-valued functions f on Y such that f? is

integrable with respect to the Lebesgue measure. (Thus a function f€ L^(v) if

and only if the function f defined by f (9) = f(e1 ) for 9 € [- ir, + 1 1 ] belongs

to lP( -^- d6)) .

In the same way one considers the Banach algebra L (v) of all complex-

valued essential bounded functions with respect to the Lebesgue measure on Y ,

(i.e. a function f6 L (Y) if and only if the function f defined by

f(9) = f(e1 9) belongs to L°°( —— d6)) .

Let p^l , as usual, the space H-'- is the set of analytic functions in

D = {z ; |z | < 1} such that f^ defined by f^.(9) = f(re16) , for 6^ [- TT, +TT] ,

belongs to L^(-^— d9) for every 0^r<l , or with the other words, H^ is a-

closed subspace of functions f of L^y) such that J'1""' e1119 f(e1 9) = d9= 0 ,

n = 1, 2, 3, ... "7T

Taking X = L^('Y) and 'U = L (v) , we define a representation

V : Zi -. R ( X ) by :

V f = Cp f , for every CpeL^Y) , f^L^Y) .

From the theorem of M. Riesz ( [3] , cap. IX) we have L^Y) = Hp CI? ,

1 < p < oo ^ where H33 is the space of complex-conjugate functions of Hp beco-

ming zero at z = 0 ..Let P be the continuous projection of L (Y ) onto H- •

We define the continuous linear map U : L^Y) -> d^H^) by :

U^ f = P V f , for every Cp 6 L°°(y) , f^P .

Obviously, U is a continuous linear map with the above properties (l)

and (2). Then an operator T^lB^) such that U T = T U , for cp € L^Y) and

T~ U ^Q is a L (y)-subspectral operator. For p = 2 , V . is the bilateral
e e

shift and U . is the unilateral shift (see [2]) .
e19
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