Surgery equivalence relations for 3-manifolds
[Surgery equivalence relations for 3-manifolds]
Winter Braids Lecture Notes, Tome 8 (2021), Exposé no. 1, 41 p.

By classical results of Rochlin, Thom, Wallace and Lickorish, it is well-known that any two 3-manifolds (with diffeomorphic boundaries) are related one to the other by surgery operations. Yet, by restricting the type of the surgeries, one can define several families of non-trivial equivalence relations on the sets of (diffeomorphism classes of) 3-manifolds. In this expository paper, which is based on lectures given at the school “Winter Braids XI” (Dijon, December 2021), we explain how certain filtrations of mapping class groups of surfaces enter into the definitions and the mutual comparison of these surgery equivalence relations. We also survey the ways in which concrete invariants of 3-manifolds (such as finite-type invariants) can be used to characterize such relations.

Publié le :
DOI : 10.5802/wbln.38
Massuyeau, Gwénaël 1

1 Institut de Mathématiques de Bourgogne, UMR 5584, CNRS, Université de Bourgogne, 21000 Dijon, France
@article{WBLN_2021__8__A1_0,
     author = {Massuyeau, Gw\'ena\"el},
     title = {Surgery equivalence relations for 3-manifolds},
     journal = {Winter Braids Lecture Notes},
     note = {talk:1},
     pages = {1--41},
     publisher = {Winter Braids School},
     volume = {8},
     year = {2021},
     doi = {10.5802/wbln.38},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/wbln.38/}
}
TY  - JOUR
AU  - Massuyeau, Gwénaël
TI  - Surgery equivalence relations for 3-manifolds
JO  - Winter Braids Lecture Notes
N1  - talk:1
PY  - 2021
SP  - 1
EP  - 41
VL  - 8
PB  - Winter Braids School
UR  - http://www.numdam.org/articles/10.5802/wbln.38/
DO  - 10.5802/wbln.38
LA  - en
ID  - WBLN_2021__8__A1_0
ER  - 
%0 Journal Article
%A Massuyeau, Gwénaël
%T Surgery equivalence relations for 3-manifolds
%J Winter Braids Lecture Notes
%Z talk:1
%D 2021
%P 1-41
%V 8
%I Winter Braids School
%U http://www.numdam.org/articles/10.5802/wbln.38/
%R 10.5802/wbln.38
%G en
%F WBLN_2021__8__A1_0
Massuyeau, Gwénaël. Surgery equivalence relations for 3-manifolds. Winter Braids Lecture Notes, Tome 8 (2021), Exposé no. 1, 41 p. doi : 10.5802/wbln.38. http://www.numdam.org/articles/10.5802/wbln.38/

[1] E. Auclair & C. Lescop, Clover calculus for homology 3-spheres via basic algebraic topology. Algebr. Geom. Topol. 5 (2005), 71–106. | DOI | MR | Zbl

[2] R. Baer, Isotopie von Kurven auf orientierbaren, geschlossenen Flächen und ihr Zusamenhang mit der topologischen Deformation der Flächen. J. Reine Angew. Math. 159 (1928), 101–116. | DOI | Zbl

[3] R. H. Bing, Necessary and sufficient conditions that a 3-manifold be S 3 . Ann. of Math. (2) 68 (1958), 17–37. | DOI | MR | Zbl

[4] J. Birman, On Siegel’s modular group. Math. Ann. 191 (1971), 59–68. | DOI | MR | Zbl

[5] J. Birman, Poincaré’s conjecture and the homeotopy group of a closed, orientable 2-manifold. Collection of articles dedicated to the memory of Hanna Neumann, VI. J. Austral. Math. Soc. 17 (1974), 214–221. | DOI | MR | Zbl

[6] J. Birman, Braids, links, and mapping class groups. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974, Annals of Mathematics Studies, No. 82. | Zbl

[7] J. Birman & R. Craggs, The μ-invariant of 3-manifolds and certain structural properties of the group of homeomorphisms of a closed, oriented 2-manifold. Trans. Amer. Math. Soc. 237 (1978), 283–309. | DOI | MR | Zbl

[8] A. Casson, Lecture notes. MSRI Lectures (1985), Berkeley.

[9] D. Cheptea, K. Habiro & G. Massuyeau, A functorial LMO invariant for Lagrangian cobordisms. Geom. Topol. 12 (2008), 1091–1170. | DOI | MR | Zbl

[10] T. Church, M. Ershov & A. Putman, On finite generation of the Johnson filtrations. J. Eur. Math. Soc. 24 (2022), no. 8, 2875–2914. | DOI | MR | Zbl

[11] T. Cochran, A. Gerges & K. Orr, Dehn surgery equivalence relations on 3-manifolds. Math. Proc. Cambridge Philos. Soc. 131 (2001), no. 1, 97–127. | DOI | MR | Zbl

[12] T. Cochran & P. Melvin, Finite type invariants of 3-manifolds. Invent. Math. 140 (2000), no. 1, 45–100. | DOI | MR | Zbl

[13] M. Dehn, Die Gruppe der Abbildungsklassen. (Das arithmetische Feld auf Flächen.) Acta Math. 69 (1938), 135–206. | DOI | Zbl

[14] F. Deloup & G. Massuyeau, Quadratic functions and complex spin structures on 3-manifolds. Topology 44:3 (2005) 509–555. | DOI | MR | Zbl

[15] A. Durfee, Bilinear and quadratic forms on torsion modules. Adv. in Math. 25 (1977), 133–164. | DOI | MR | Zbl

[16] M. Ershov & S. He, On finiteness properties of the Johnson filtrations. Duke Math. J. 167 (2018), no. 9, 1713–1759. | DOI | MR | Zbl

[17] Q. Faes, Equivalence relations among homology 3-spheres and the Johnson filtration. Thèse de doctorat de l’Université de Bourgogne Franche–Comté, 2021.

[18] Q. Faes, Triviality of the J 4 -equivalence among homology 3-spheres. Trans. Amer. Math. Soc. 375 (2022), 6597–6620. | DOI | MR | Zbl

[19] B. Farb & D. Margalit, A primer on mapping class groups. Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012.

[20] S. Garoufalidis, On finite type 3-manifold invariants. I. J. Knot Theory Ramifications 5 (1996), no. 4, 441–461. | DOI | MR | Zbl

[21] S. Garoufalidis, The mystery of the brane relation. J. Knot Theory Ramifications 11 (2002), no. 5, 725–737. | DOI | MR | Zbl

[22] S. Garoufalidis, M. Goussarov & M. Polyak, Calculus of clovers and finite type invariants of 3-manifolds. Geom. Topol. 5 (2001) 75–108. | DOI | MR | Zbl

[23] S. Garoufalidis & J. Levine, Finite type invariants, the mapping class group and blinks. J. Diff. Geom. 47 (1997), 257–320. | DOI | MR | Zbl

[24] S. Garoufalidis & J. Levine, Finite type 3-manifold invariants and the structure of the Torelli group. I. Invent. Math. 131 (1998), no. 3, 541–594. | DOI | MR | Zbl

[25] S. Garoufalidis & J. Levine, On finite type 3-manifold invariants. II. Math. Ann. 306 (1996), no. 4, 691–718. | DOI | MR | Zbl

[26] S. Garoufalidis & J. Levine, Tree-level invariants of three-manifolds, Massey products and the Johnson homomorphism. In Graphs and patterns in mathematics and theoretical physics, volume 73 of Proc. Sympos. Pure Math., pages 173–203. Amer. Math. Soc., Providence, RI, 2005. | DOI | Zbl

[27] M. Goussarov, Finite type invariants and n-equivalence of 3-manifolds. Compt. Rend. Ac. Sc. Paris 329 Série I (1999), 517–522. | DOI | MR | Zbl

[28] M. Goussarov, Variations of knotted graphs. The geometric technique of n-equivalence. Algebra i Analiz 12 (2000), no. 4, 79–125.

[29] N. Habegger, Milnor, Johnson, and tree level perturbative invariants. Preprint (2000) available at https://www.math.sciences.univ-nantes.fr/habegger/. | DOI | MR

[30] K. Habiro, Claspers and finite type invariants of links. Geom. Topol. 4 (2000), 1–83. | DOI | MR | Zbl

[31] K. Habiro & G. Massuyeau, Symplectic Jacobi diagrams and the Lie algebra of homology cylinders. J. Topology 2:3 (2009) 527–569. | DOI | MR | Zbl

[32] K. Habiro & G. Massuyeau, From mapping class groups to monoids of homology cobordisms: a survey. Handbook of Teichmüller theory, Volume III, 465–529. Ed. A. Papadopoulos, IRMA Lect. Math. Theor. Phys., 17, Eur. Math. Soc., Zürich, 2012. | DOI | Zbl

[33] A. Heap, Bordism invariants of the mapping class group. Topology 45 (2006), no. 5, 851–886. | DOI | MR | Zbl

[34] R. Hain, Infinitesimal presentations of the Torelli groups. J. Amer. Math. Soc. 10 (1997), no. 3, 597–651. | DOI | MR | Zbl

[35] H. Hilden, Representations of homology 3-spheres. Pacific J. Math. 94 (1981), no. 1, 125–129. | DOI | MR | Zbl

[36] K. Igusa & K. Orr, Links, pictures and the homology of nilpotent groups. Topology 40 (2001), no. 6, 1125–1166. | DOI | MR | Zbl

[37] D. Johnson, Letter to J. Birman of 10 March 1977. Short description of machinery to be used in forthcoming paper. Available at https://celebratio.org/Birman_JS/article/640/.

[38] D. Johnson, Homeomorphisms of a surface which act trivially on homology. Proc. Amer. Math. Soc. 75 (1979), no. 1, 119–125. | DOI | MR | Zbl

[39] D. Johnson, Quadratic forms and the Birman-Craggs homomorphisms. Trans. Amer. Math. Soc. 261 (1980), no. 1, 235–254. | DOI | MR | Zbl

[40] D. Johnson, The structure of the Torelli group. I. A finite set of generators for . Ann. of Math. (2) 118 (1983), no. 3, 423–442. | DOI | MR | Zbl

[41] D. Johnson, A survey of the Torelli group, in Low-dimensional topology (San Francisco, Calif., 1981), Contemp. Math., vol. 20, Amer. Math. Soc., Providence, RI, 1983, p. 165–179. | DOI | Zbl

[42] D. Johnson, The structure of the Torelli group. II. A characterization of the group generated by twists on bounding curves. Topology 24 (1985), no. 2, 113–126. | DOI | MR | Zbl

[43] D. Johnson, The structure of the Torelli group. III. The abelianization of . Topology 24 (1985), no. 2, 127–144. | DOI | MR | Zbl

[44] A. Kawauchi & S. Kojima. Algebraic classification of linking pairings on 3-manifolds. Math. Ann. 253 (1980), no. 1, 29–42. | DOI | MR | Zbl

[45] R. Kirby, The topology of 4-manifolds. Lecture Notes in Mathematics, 1374. Springer-Verlag, Berlin, 1989. | DOI | Zbl

[46] M. Kneser & D. Puppe, Quadratische Formen und Verschlingungsinvarianten von Knoten. Math. Z. 58 (1953), 376–384. | DOI | MR | Zbl

[47] T. Kuriya, T. Le & T. Ohtsuki, The perturbative invariants of rational homology 3-spheres can be recovered from the LMO invariant. J. Topol. 5 (2012), no. 2, 458–484. | DOI | MR | Zbl

[48] R. Kyle, Branched covering spaces and the quadratic forms of links. Ann. of Math. 59 (1954), no. 2, 539–548. | DOI | MR | Zbl

[49] S. P. Humphries, Generators for the mapping class group, Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977), Lecture Notes in Math., vol. 722, Springer, Berlin, 1979, pp. 44–47. | DOI | Zbl

[50] G. Kuperberg & D. Thurston, Perturbative 3-manifold invariants by cut-and-paste topology. Preprint (1999) arXiv:math/9912167.

[51] J. Lannes & F. Latour, Signature modulo 8 des variétés de dimension 4k dont le bord est stablement parallélisé. Compt. Rend. Ac. Sc. Paris 279 Série A (1974), 705–707. | Zbl

[52] T. Le, An invariant of integral homology 3-spheres which is universal for all finite type invariants. Solitons, geometry, and topology: on the crossroad, 75–100, Amer. Math. Soc. Transl. Ser. 2, 179, Adv. Math. Sci., 33, Amer. Math. Soc., Providence, RI, 1997. | DOI | Zbl

[53] T. Le, J. Murakami & T. Ohtsuki, On a universal perturbative invariant of 3-manifolds. Topology 37 (1998), no. 3, 539–574. | DOI | MR | Zbl

[54] C. Lescop, A sum formula for the Casson–Walker invariant. Invent. Math. 133 (1998), no. 3, 613–681. | DOI | MR | Zbl

[55] J. Levine, Homology cylinders: an enlargement of the mapping class group. Alg. Geom. Topol. 1 (2001), no. 1, 243–270. | DOI | MR | Zbl

[56] J. Levine, The Lagrangian filtration of the mapping class group and finite-type invariants of homology spheres. Math. Proc. Cambridge Phil. Soc. 141 (2006), no. 2, 303–315. | DOI | MR | Zbl

[57] W. B. R. Lickorish, A finite set of generators for the homeotopy group of a 2-manifold. Proc. Cambridge Philos. Soc. 60 (1964), 769–778. | DOI | MR | Zbl

[58] D. McCullough & A. Miller, The genus 2 Torelli group is not finitely generated. Topology Appl. 22 (1986), no. 1, 43–49. | DOI | MR | Zbl

[59] W. Magnus, Über Beziehungen zwischen höheren Kommutatoren. J. Reine Angew. Math. 177 (1937), 105–115. | DOI | Zbl

[60] G. Massuyeau, Spin Borromean surgeries. Trans. Amer. Math. Soc. 355 (2003), no. 10, 3991–4017. | DOI | MR | Zbl

[61] G. Massuyeau, Cohomology rings, Rochlin function, linking pairing and the Goussarov-Habiro theory of three-manifolds. Algebr. Geom. Topol. 3 (2003), 1139–1166. | DOI | MR | Zbl

[62] G. Massuyeau, Claspers and finite-type invariants of 3-manifolds. Handwritten notes of lectures given at the University of Zürich (2005), available at https://massuyea.perso.math.cnrs.fr/notes.html.

[63] G. Massuyeau, Finite-type invariants of 3-manifolds and the dimension subgroup problem. J. Lond. Math. Soc. (2) 75 (2007), no. 3, 791–811. | DOI | MR | Zbl

[64] G. Massuyeau, An introduction to the abelian Reidemeister torsion of three-dimensional manifolds. Ann. Math. Blaise Pascal 18:1 (2011) 61–140. | DOI | MR | Zbl

[65] G. Massuyeau, Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant. Bull. Soc. Math. France 140:1 (2012) 101–161. | DOI | MR | Zbl

[66] G. Massuyeau & J.–B. Meilhan, Characterization of Y 2 -equivalence for homology cylinders. J. Knot Th. Ramifications 12:4 (2003), 493–522. | DOI | Zbl

[67] G. Massuyeau & J.–B. Meilhan, Equivalence relations for homology cylinders and the core of the Casson invariant. Trans. Amer. Math. Soc. 365:10 (2013), 5431–5502. | DOI | MR | Zbl

[68] S. Matveev, Generalized surgery of three-dimensional manifolds and representations of homology spheres. Mat. Zametki 42 n 2 (1987), 268–278. (English translation in: Math. Notices Acad. Sci. USSR, 42:2). | DOI | Zbl

[69] J.–B. Meilhan & A. Yasuhara, Arrow calculus for welded and classical links. Algebr. Geom. Topol. 19 (2019), no. 1, 397–456. | DOI | MR | Zbl

[70] J. Milnor, Morse theory. Annals of Mathematics Studies, No. 51. Princeton University Press, Princeton, N.J., 1963.

[71] J. Milnor, Lectures on the h-cobordism theorem. Princeton University Press, Princeton, N.J. 1965. | DOI | Zbl

[72] J. Morgan & D. Sullivan, The transversality characteristic class and linking cycles in surgery theory. Ann. of Math. II Ser. 99 (1974), 463–544. | DOI | MR | Zbl

[73] S. Morita, Casson’s invariant for homology 3-spheres and characteristic classes of surface bundles I. Topology 28 (1989), no. 3, 305–323. | DOI | MR | Zbl

[74] S. Morita, On the structure of the Torelli group and the Casson invariant. Topology 30 (1991), 603–621. | DOI | MR | Zbl

[75] S. Morita, Abelian quotients of subgroups of the mapping class group of surfaces. Duke Math. J. 70 (1993), no. 3, 699–726. | DOI | MR | Zbl

[76] S. Morita, Structure of the mapping class groups of surfaces: a survey and a prospect. Proceedings of the Kirbyfest (Berkeley, CA, 1998), 349–406, Geom. Topol. Monogr., 2, Geom. Topol. Publ., Coventry, 1999. | DOI | Zbl

[77] S. Morita, T. Sakasai & M. Suzuki, Torelli group, Johnson kernel, and invariants of homology spheres. Quantum Topol. 11 (2020), no. 2, 379–410. | DOI | MR | Zbl

[78] D. Moussard, Finite type invariants of rational homology 3-spheres. Algebr. Geom. Topol. 12 (2012), no. 4, 2389–2428. | DOI | MR | Zbl

[79] D. Moussard, Realizing isomorphisms between first homology groups of closed 3-manifolds by borromean surgeries. J. Knot Theory Ramifications 24 (2015), no. 4, 1550024, | DOI | MR | Zbl

[80] H. Murakami & Y. Nakanishi, On a certain move generating link-homology. Math. Ann. 284 (1989), 75–89. | DOI | MR | Zbl

[81] Y. Nozaki, M. Sato & M. Suzuki, Abelian quotients of the Y–filtration on the homology cylinders via the LMO functor. Geom. Topol. 26 (2022), no. 1, 221–282. | DOI | Zbl

[82] Y. Nozaki, M. Sato & M. Suzuki, On the kernel of the surgery map restricted to the 1-loop part. J. Topol. 15 (2022), no. 2, 587–619. | DOI | MR | Zbl

[83] T. Ohtsuki, A polynomial invariant of integral homology 3-spheres. Math. Proc. Cambridge Philos. Soc. 117 (1995), no. 1, 83–112. | DOI | MR | Zbl

[84] T. Ohtsuki, Finite type invariants of integral homology 3-spheres. J. Knot Theory Ramifications 5 (1996), no. 1, 101–115. | DOI | MR | Zbl

[85] T. Ohtsuki, Quantum invariants. A study of knots, 3-manifolds, and their sets.. Volume 29 of Series on Knots and Everything. World Scientific Publishing Co. Inc., River Edge, NJ, 2002. | DOI | Zbl

[86] I. Passi, Group rings and their augmentation ideals. LNM 715, Springer–Verlag, Berlin, 1979. | DOI | Zbl

[87] W. Pitsch, Integral homology 3-spheres and the Johnson filtration. Trans. Amer. Math. Soc. 360 (2008), no. 6, 2825–2847. | DOI | MR | Zbl

[88] J. Powell, Two theorems on the mapping class group of a surface. Proc. Amer. Math. Soc. 68 (1978), no. 3, 347–350. | DOI | MR | Zbl

[89] E. Rips, On the fourth integer dimension subgroup. Israel J. Math. 12 (1972), 342–346. | DOI | MR | Zbl

[90] V. Rochlin, A three-dimensional manifold is the boundary of a four-dimensional one. Doklady Akad. Nauk SSSR (N.S.) 81 (1951), 355–357.

[91] C. Rourke, A new proof that Ω 3 is zero. J. London Math. Soc. (2) 31 (1985), no. 2, 373–376. | DOI | Zbl

[92] T. Satoh, On the Johnson homomorphisms of the mapping class groups of surfaces. Handbook of group actions. Vol. I, 373–407, Adv. Lect. Math. (ALM), 31, Int. Press, Somerville, MA, 2015.

[93] N. Saveliev, Invariants for homology 3-spheres. Encyclopaedia of Mathematical Sciences, 140. Low-Dimensional Topology, I. Springer-Verlag, Berlin, 2002. | DOI | Zbl

[94] H. Seifert & W. Threlfall, Seifert and Threlfall: a textbook of topology. Translated from the German edition of 1934 by Michael A. Goldman. With a preface by Joan S. Birman. Pure and Applied Mathematics, 89. Academic Press, Inc., New York-London, 1980.

[95] T. Stanford, Braid commutators and Vassiliev invariants. Pacific J. Math. 174 (1996), no. 1, 269–276. | DOI | MR | Zbl

[96] D. Sullivan, On the intersection ring of compact three manifolds. Topology 14 (1975), no. 3, 275–277. | DOI | MR | Zbl

[97] G. Swarup, On a theorem of C. B. Thomas. J. London Math. Soc. 8 (1974), 13–21. | DOI | Zbl

[98] R. Thom, Quelques propriétés des variétés-bords. Colloque de Topologie de Strasbourg, 1951, no. V, 10 pp. La Bibliothèque Nationale et Universitaire de Strasbourg, 1952. | Zbl

[99] R. Thom, Sur les variétés cobordantes. Colloque de topologie et géométrie différentielle, Strasbourg, 1952, no. 7, 4 pp. La Bibliothèque Nationale et Universitaire de Strasbourg, 1953. | Zbl

[100] R. Thom, Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. 28 (1954), 17–86. | DOI | Zbl

[101] C. Thomas, The oriented homotopy type of compact 3-manifolds. Proc. London Math. Soc. 19 (1969), 31–44. | DOI | MR | Zbl

[102] V. Turaev, Cohomology rings, linking coefficient forms and invariants of spin structures in three-dimensional manifolds. Math. USSR Sb. 48 (1984), 65–79. | DOI | Zbl

[103] V. Turaev, Nilpotent homotopy types of closed 3-manifolds. In Topology (Leningrad, 1982), volume 1060 of Lecture Notes in Math., pages 355–366. Springer, Berlin, 1984. | DOI | Zbl

[104] C. Wall, Quadratic forms on finite groups, and related topics. Topology 2 (1963), 281–298. | DOI | MR | Zbl

[105] C. Wall, Quadratic forms on finite groups. II. Bull. London Math. Soc. 4 (1972), 156–160. | DOI | MR | Zbl

[106] A. Wallace, Modifications and cobounding manifolds. Canadian J. Math. 12 (1960), 503–528. | DOI | MR | Zbl

Cité par Sources :