On rank one symmetric space
Séminaire de théorie spectrale et géométrie, Volume 23 (2004-2005), pp. 125-130.

In this paper we survey some recent results on rank one symmetric space.

Dans ce papier, nous survolons quelques résultats récents sur l’espace symétrique de rang un.

DOI: 10.5802/tsg.234
Classification: 58D19, 53C23
@article{TSG_2004-2005__23__125_0,
     author = {Kim, Inkang},
     title = {On rank one symmetric space},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {125--130},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {23},
     year = {2004-2005},
     doi = {10.5802/tsg.234},
     zbl = {05046262},
     mrnumber = {2270226},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/tsg.234/}
}
TY  - JOUR
AU  - Kim, Inkang
TI  - On rank one symmetric space
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2004-2005
SP  - 125
EP  - 130
VL  - 23
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/tsg.234/
DO  - 10.5802/tsg.234
LA  - en
ID  - TSG_2004-2005__23__125_0
ER  - 
%0 Journal Article
%A Kim, Inkang
%T On rank one symmetric space
%J Séminaire de théorie spectrale et géométrie
%D 2004-2005
%P 125-130
%V 23
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/articles/10.5802/tsg.234/
%R 10.5802/tsg.234
%G en
%F TSG_2004-2005__23__125_0
Kim, Inkang. On rank one symmetric space. Séminaire de théorie spectrale et géométrie, Volume 23 (2004-2005), pp. 125-130. doi : 10.5802/tsg.234. http://www.numdam.org/articles/10.5802/tsg.234/

[1] I. Belegradek, On Mostow rigidity for variable negative curvature, Topology, 41 (2) (2002), 341-361. | MR | Zbl

[2] G. Besson, G. Courtois, S. Gallot, Entropies et Rigidités des Espaces localement symétriques de courbure strictement négative, GAFA. 5 (5) (1995), 731-799. | MR | Zbl

[3] R. Brooks, P. Perry and P. Petersen, Spectral geometry in dimension 3, Acta Math., vol 173 (2) (1994), 283-305. | MR | Zbl

[4] K. Corlette, Flat G-bundles with canonical metrics, J. Diff. Geom. vol 28 (1988), no. 3, 361-382. | MR | Zbl

[5] G. Courtois and I. Kim, Isospectral finiteness on rank one manifolds, in preparation.

[6] F. Dal’Bo and I. Kim, Marked length rigidity of symmetric spaces, Comm. Math. Helvetici, vol 77 (2) (2002), 399-407. | Zbl

[7] T. Gelander, Homotopy type and volume of locally symmetric manifolds, Duke Math. J. vol 124 (2004), no. 3, 459-515. | MR | Zbl

[8] I. Kim, C. Lecuire and K. Ohshika, Convergence of freely decomposable Kleinian groups, to appear.

[9] I. Kim, Rigidity on symmetric spaces, Topology, vol 43 (2) (2004), 393-405. | MR | Zbl

[10] I. Kim, Isospectral finiteness on hyperbolic 3-manifolds, to appear in Comm. Pure. Appl. Math. | MR | Zbl

[11] I. Kim and P. Pansu, Local rigidity of quaternionic hyperbolic lattices, in preparation.

[12] H.P. McKean, Selberg’s trace formula as applied to a compact Riemann surface, Comm. Pure. Appl. Math., 25 (1972), 225-246.

[13] B. Osgood, R. Phillips and P. Sarnak, Compact isospectral sets of surfaces, J. Funct. Anal, vol 80 (1) (1988), 212-234. | MR | Zbl

[14] D. Sullivan,On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, in Riemann surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference. Annals of Math. Studies 97. Princeton, 1981. | MR | Zbl

Cited by Sources: