Electrostatic Force Computation with Boundary Element Methods
The SMAI Journal of computational mathematics, Tome 8 (2022), pp. 49-74.

Boundary element methods are a well-established technique for solving linear boundary value problems for electrostatic potentials. In this context we present a novel way to approximate the forces exerted by electrostatic fields on conducting objects. Like the standard post-processing technique employing surface integrals derived from the Maxwell stress tensor the new approach solely relies on surface integrals, but, compared to the former, offers better accuracy and faster convergence.

The new formulas arise from the interpretation of forces fields as shape derivatives, in the spirit of the virtual work principle, combined with the adjoint approach from shape optimization. In contrast to standard formulas, they meet the continuity and smoothing requirements of abstract duality arguments, which supply a rigorous underpinning for their observed superior performance.

Publié le :
DOI : 10.5802/smai-jcm.79
Classification : 65N38, 78M15, 45A05
Mots clés : Electrostatics, electromagnetic forces, shape derivative, boundary integral equations, boundary element method
Panchal, Piyush 1 ; Hiptmair, Ralf 1

1 SAM, D-MATH, ETH Zurich, CH-8092 Zürich
@article{SMAI-JCM_2022__8__49_0,
     author = {Panchal, Piyush and Hiptmair, Ralf},
     title = {Electrostatic {Force} {Computation} with {Boundary} {Element} {Methods}},
     journal = {The SMAI Journal of computational mathematics},
     pages = {49--74},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {8},
     year = {2022},
     doi = {10.5802/smai-jcm.79},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/smai-jcm.79/}
}
TY  - JOUR
AU  - Panchal, Piyush
AU  - Hiptmair, Ralf
TI  - Electrostatic Force Computation with Boundary Element Methods
JO  - The SMAI Journal of computational mathematics
PY  - 2022
SP  - 49
EP  - 74
VL  - 8
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/smai-jcm.79/
DO  - 10.5802/smai-jcm.79
LA  - en
ID  - SMAI-JCM_2022__8__49_0
ER  - 
%0 Journal Article
%A Panchal, Piyush
%A Hiptmair, Ralf
%T Electrostatic Force Computation with Boundary Element Methods
%J The SMAI Journal of computational mathematics
%D 2022
%P 49-74
%V 8
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/smai-jcm.79/
%R 10.5802/smai-jcm.79
%G en
%F SMAI-JCM_2022__8__49_0
Panchal, Piyush; Hiptmair, Ralf. Electrostatic Force Computation with Boundary Element Methods. The SMAI Journal of computational mathematics, Tome 8 (2022), pp. 49-74. doi : 10.5802/smai-jcm.79. http://www.numdam.org/articles/10.5802/smai-jcm.79/

[1] Becker, R.; Rannacher, R. An optimal control approach to a posteriori error estimation in finite element methods, Acta Numer., Volume 10 (2001), pp. 1-102 | DOI | MR | Zbl

[2] Betcke, Timo; Haberl, Alexander; Praetorius, Dirk Adaptive boundary element methods for the computation of the electrostatic capacity on complex polyhedra, J. Comput. Phys., Volume 397 (2019), 108837, 19 pages | DOI | MR | Zbl

[3] Bossavit, A. Forces in magnetostatics and their computation, J. Appl. Phys., Volume 67 (1990) no. 9, pp. 5812-5814 | DOI

[4] Carpentier, Anthony; Galopin, Nicolas; Chadebec, Olivier; Meunier, Gérard; Guérin, Christophe Application of the virtual work principle to compute magnetic forces with a volume integral method, Int. J. Numer. Model., Volume 27 (2014) no. 3, pp. 418-432 | DOI

[5] Ciarlet, Philippe G. Linear and nonlinear functional analysis with applications, Society for Industrial and Applied Mathematics, 2013, xiv+832 pages

[6] Coulomb, J. L. A methodology for the determination of global electromechanical quantities from a finite element analysis and its application to the evaluation of magnetic forces, torques and stiffness, IEEE Trans. Magnetics, Volume 19 (1983) no. 6, pp. 2514-2519 | DOI

[7] Dauge, Monique Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions, Lecture Notes in Mathematics, 1341, Springer, 1988 | DOI

[8] de Rham, Georges Differentiable manifolds. Forms, currents, harmonic forms, Grundlehren der Mathematischen Wissenschaften, 266, Springer, 1984, x+167 pages (Translated from the French by F. R. Smith, With an introduction by S. S. Chern) | DOI

[9] Delfour, M. C.; Zolésio, J.-P. Shapes and geometries. Metrics, analysis, differential calculus, and optimization, Advances in Design and Control, 22, Society for Industrial and Applied Mathematics, 2011, xxiv+622 pages

[10] Gimperlein, Heiko; Meyer, Fabian; Özdemir, Ceyhun; Stark, David; Stephan, Ernst P. Boundary elements with mesh refinements for the wave equation, Numer. Math., Volume 139 (2018) no. 4, pp. 867-912 | DOI | MR | Zbl

[11] Gong, Wei; Zhu, Shengfeng On Discrete Shape Gradients of Boundary Type for PDE-constrained Shape Optimization, SIAM J. Numer. Anal., Volume 59 (2021) no. 3, pp. 1510-1541 | DOI | MR | Zbl

[12] Grisvard, P. Elliptic Problems in Nonsmooth Domains, Pitman, 1985 | DOI

[13] Gwinner, Joachim; Stephan, Ernst P. Advanced boundary element methods, Springer Series in Computational Mathematics, 52, Springer, 2018 | DOI

[14] Hackbusch, W. Integral equations. Theory and numerical treatment., International Series of Numerical Mathematics, 120, Birkhäuser, 1995 | DOI

[15] Henrotte, François; Deliege, G.; Hameyer, Kay The eggshell approach for the computation of electromagnetic forces in 2D and 3D, COMPEL, Volume 23 (2004) no. 4, pp. 996-1005 | DOI | MR | Zbl

[16] Henrotte, François; Hameyer, Kay Computation of electromagnetic force densities: Maxwell stress tensor vs. virtual work principle, J. Comput. Appl. Math., Volume 168 (2004) no. 1-2, pp. 235-243 | DOI | MR | Zbl

[17] Henrotte, François; Hameyer, Kay A Theory for Electromagnetic Force Formulas in Continuous Media, IEEE Trans. Magnetics, Volume 43 (2007) no. 4, pp. 1445-1448 | DOI

[18] Heuer, Norbert; Stephan, Ernst P. The hp-Version of the Boundary Element Method on Polygons, J. Integral Equations Appl., Volume 8 (1996) no. 2, pp. 173-212 | DOI | MR

[19] Hinze, M.; Pinnau, R.; Ulbrich, M.; Ulbrich, S. Optimization with PDE constraints, Mathematical Modelling: Theory and Applications, 23, Springer, 2009, xii+270 pages

[20] Hiptmair, Ralf; Li, Jingzhi Shape derivatives in differential forms I: an intrinsic perspective, Ann. Mat. Pura Appl., Volume 192 (2013) no. 6, pp. 1077-1098 | DOI | MR | Zbl

[21] Hiptmair, Ralf; Paganini, A.; Sargheini, S. Comparison of approximate shape gradients, BIT Numer. Math., Volume 55 (2014), pp. 459-485 | DOI | MR | Zbl

[22] Jackson, J. D. Classical electrodynamics, John Wiley & Sons, 1998

[23] Maischak, Matthias; Stephan, Ernst P. The hp-version of the boundary element method in 3 : The basic approximation results, Math. Methods Appl. Sci., Volume 20 (1997), pp. 461-476 | DOI | MR

[24] McFee, S.; Webb, J. P.; Lowther, D. A. A tunable volume integration formulation for force calculation in finite-element based computational magnetostatics, IEEE Trans. Magnetics, Volume 24 (1988) no. 1, pp. 439-442 | DOI

[25] McLean, W. Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000

[26] Nédélec, J.-C. Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, Applied Mathematical Sciences, 44, Springer, 2001 | DOI

[27] Read, F. H. Improved Extrapolation Technique in the Boundary Element Method to Find the Capacitances of the Unit Square and Cube, J. Comput. Phys., Volume 133 (1997) no. 1, pp. 1-5 | DOI | Zbl

[28] Sauter, S.; Schwab, C. Boundary Element Methods, Springer Series in Computational Mathematics, 39, Springer, 2010

[29] Sokolowski, J.; Zolésio, J.-P. Introduction to shape optimization, Springer Series in Computational Mathematics, 16, Springer, 1992 | DOI

[30] Steinbach, Olaf Numerical approximation methods for elliptic boundary value problems, Springer, 2008, xii+386 pages | DOI

[31] Stephan, Ernst P. The hp-version of BEM – Fast convergence, adaptivity and efficient preconditioning, J. Comput. Math., Volume 27 (2009) no. 2-3, pp. 348-359 | MR | Zbl

Cité par Sources :