Splines for Meshes with Irregularities
The SMAI Journal of computational mathematics, Tome S5 (2019), pp. 161-183.

Splines form an elegant bridge between the continuous real world and the discrete computational world. Their tensor-product form lifts many univariate properties effortlessly to the surfaces, volumes and beyond. Irregularities, where the tensor-structure breaks down, therefore deserve attention – and provide a rich source of mathematical challenges and insights.

This paper reviews and categorizes techniques for splines on meshes with irregularities. Of particular interest are quad-dominant meshes that can have n4 valent interior points and T-junctions where quad-strips end. “Generalized” splines can use quad-dominant meshes as control nets both for modeling geometry and to support engineering analysis without additional meshing.

Publié le :
DOI : 10.5802/smai-jcm.57
Classification : 65N35, 15A15
Mots clés : splines, irregular, classification
Peters, Jörg 1

1 Dept CISE, University of Florida, Gainesville FL 32611-6120, USA
@article{SMAI-JCM_2019__S5__161_0,
     author = {Peters, J\"org},
     title = {Splines for {Meshes} with {Irregularities}},
     journal = {The SMAI Journal of computational mathematics},
     pages = {161--183},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {S5},
     year = {2019},
     doi = {10.5802/smai-jcm.57},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/smai-jcm.57/}
}
TY  - JOUR
AU  - Peters, Jörg
TI  - Splines for Meshes with Irregularities
JO  - The SMAI Journal of computational mathematics
PY  - 2019
SP  - 161
EP  - 183
VL  - S5
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/smai-jcm.57/
DO  - 10.5802/smai-jcm.57
LA  - en
ID  - SMAI-JCM_2019__S5__161_0
ER  - 
%0 Journal Article
%A Peters, Jörg
%T Splines for Meshes with Irregularities
%J The SMAI Journal of computational mathematics
%D 2019
%P 161-183
%V S5
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/smai-jcm.57/
%R 10.5802/smai-jcm.57
%G en
%F SMAI-JCM_2019__S5__161_0
Peters, Jörg. Splines for Meshes with Irregularities. The SMAI Journal of computational mathematics, Tome S5 (2019), pp. 161-183. doi : 10.5802/smai-jcm.57. http://www.numdam.org/articles/10.5802/smai-jcm.57/

[1] Andjelic, Z. What is the definition of a class A surface? (https://grabcad.com/questions/what-is-definition-of-class-a-surface, accessed May 2015)

[2] Au, F. T. K.; Cheung, Y. K. Spline Finite Elements for beam and plate, Computers & Structures, Volume 37 (1990), pp. 717-729

[3] Au, F. T. K.; Cheung, Y. K. Isoparametric Spline Finite Strip for Plane Structures, Computers & Structures, Volume 48 (1993), pp. 22-32 | Zbl

[4] Barendrecht, P. J. IsoGeometric Analysis for Subdivision Surfaces, Technical University of Eindhoven (2013) (Masters thesis)

[5] Barendrecht, P. J.; Bartoň, M.; Kosinka, J. Efficient quadrature rules for subdivision surfaces in isogeometric analysis, Comput. Methods Appl. Mech. Eng., Volume 340 (2018), pp. 1-23 | DOI | MR

[6] Beier, K.-P.; Chen, Y. Highlight-line algorithm for realtime surface-quality assessment, Comput.-Aided Des., Volume 26 (1994) no. 4, pp. 268-277 | DOI | Zbl

[7] Belytschko, T.; Stolarski, H.; Liu, W. K.; Carpenter, N.; Ong, J. SJ Stress projection for membrane and shear locking in shell finite elements, Comput. Methods Appl. Mech. Eng., Volume 51 (1985) no. 1, pp. 221-258 | DOI | MR

[8] Bommes, D.; Lévy, B.; Pietroni, N.; Puppo, E.; Silva, C.; Tarini, M.; Zorin, D. State of the Art in Quad Meshing, Eurographics STARS (2012)

[9] Braibant, V.; Fleury, C. Shape Optimal Design using B-splines, Comput. Methods Appl. Mech. Eng., Volume 44 (1984), pp. 247-267 | DOI | Zbl

[10] Catmull, E.; Clark, J. Recursively generated B-spline surfaces on arbitrary topological meshes, Comput.-Aided Des., Volume 10 (1978), pp. 350-355 | DOI

[11] Charrot, P.; Gregory, J. A. A pentagonal surface patch for computer aided geometric design, Comput. Aided Geom. Des., Volume 1 (1984) no. 1 | DOI | Zbl

[12] Cirak, F.; Ortiz, M.; Schröder, P. Subdivision surfaces: a new paradigm for thin-shell finite-element analysis, Int. J. Numer. Meth. Engng., Volume 47 (2000), pp. 2039-2072 | DOI | Zbl

[13] CNN Inside VW’s high-tech transparent factory, 2014 (https://edition.cnn.com/2014/10/28/tech/gallery/industrial-art-inside-volkswagens-transparent-factory/index.html)

[14] de Boor, C. B-form basics, Geometric Modeling: Algorithms and New Trends (Farin, G., ed.), Society for Industrial and Applied Mathematics (1987), pp. 131-148

[15] DeRose, T.; Kass, M.; Truong, T. Subdivision Surfaces in Character Animation, Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH-98), ACM Press (1998), pp. 85-94

[16] Dokken, T.; Lyche, T.; Pettersen, K. F. Polynomial splines over locally refined box-partitions, Comput. Aided Geom. Des., Volume 30 (2013) no. 3, pp. 331-356 | DOI | MR | Zbl

[17] Doo, D.; Sabin, M. Behaviour of recursive division surfaces near extraordinary points, Comput.-Aided Des., Volume 10 (1978), pp. 356-360 | DOI

[18] Farin, G. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide, Academic Press Inc., 1988 | Zbl

[19] Foundation Blender Elephants Dream, http://orange.blender.org, 2006

[20] Giannelli, C.; Jüttler, B.; Speleers, H. THB-splines: The truncated basis for hierarchical splines, Comput. Aided Geom. Des., Volume 29 (2012) no. 7, pp. 485-498 | DOI | MR | Zbl

[21] Gotsma, C. Rolling up our SLEFEs: Reflections on Putting an Academic Rendering Algorithm to Work, 2019 (SIAM/GD 19)

[22] Gregory, J. A. Smooth interpolation without twist constraints, Computer Aided Geometric Design (Barnhill, R. E.; Riesenfeld, R. F., eds.), Academic Press Inc. (1974), pp. 71-88 | DOI

[23] Gregory, J. A.; Hahn, J. M. Geometric continuity and convex combination patches, Comput. Aided Geom. Des., Volume 4 (1987) no. 1-2, pp. 79-89 | DOI | MR | Zbl

[24] Gregory, J. A.; Hahn, J. M. A C 2 polygonal surface patch, Comput. Aided Geom. Des., Volume 6 (1989) no. 1, pp. 69-75 | DOI | MR | Zbl

[25] Gregory, J. A.; Zhou, J. Filling polygonal holes with bicubic patches, Comput. Aided Geom. Des., Volume 11 (1994) no. 4, pp. 391-410 | DOI | MR | Zbl

[26] Groisser, D.; Peters, J. Matched G k -constructions always yield C k -continuous isogeometric elements, Comput. Aided Geom. Des., Volume 34 (2015), pp. 67-72 | DOI | MR | Zbl

[27] Hettinga, G. J.; Barendrecht, P. J.; Kosinka, J. A Comparison of GPU Tessellation Strategies for Multisided Patches, EG 2018 - Short Papers (Diamanti, Olga; Vaxman, Amir, eds.), The Eurographics Association (2018) | DOI

[28] Hettinga, G. J.; Kosinka, J. Phong Tessellation and PN Polygons for Polygonal Models, EG 2017 - Short Papers, The Eurographics Association (2017) | DOI

[29] Hettinga, G. J.; Kosinka, J. Multisided generalisations of Gregory patches, Comput. Aided Geom. Des., Volume 62 (2018), pp. 166-180 | DOI | MR | Zbl

[30] Hughes, T. J. R.; Cottrell, J. A.; Bazilevs, Y. Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement, Comput. Methods Appl. Mech. Eng., Volume 194 (2005), pp. 4135-4195 | DOI | MR | Zbl

[31] Jakob, W.; Tarini, M.; Panozzo, D.; Sorkine-Hornung, O. Instant field-aligned meshes, ACM Trans. Graph., Volume 34 (2015) no. 6, 189 pages | DOI

[32] Jaxon, N.; Qian, X. Isogeometric analysis on triangulations, Comput.-Aided Des., Volume 46 (2014), pp. 45-57 | DOI | MR

[33] Kang, H.; Xu, J.; Chen, F.; Deng, J. A new basis for PHT-splines, Graph. Models, Volume 82 (2015), pp. 149-159 | DOI

[34] Karčiauskas, K.; Myles, A.; Peters, J. A C 2 Polar Jet Subdivision, Proceedings of Symposium of Graphics Processing (SGP), June 26-28 2006, Cagliari, Italy (Scheffer, A.; Polthier, K., eds.), ACM Press (2006), pp. 173-180

[35] Karčiauskas, K.; Nguyen, T.; Peters, J. Generalizing bicubic splines for modelling and IGA with irregular layout, GDSPM 2015 in Salt Lake City, Utah October 12-14 (2015)

[36] Karčiauskas, K.; Nguyen, T.; Peters, J. Generalizing bicubic splines for modelling and IGA with irregular layout, Comput.-Aided Des., Volume 70 (2016), pp. 23-35 | DOI

[37] Karčiauskas, K.; Panozzo, D.; Peters, J. T-junctions in spline surfaces, ACM Trans. Graph., Volume 36 (2017) no. 5, pp. 170:1-9 | DOI

[38] Karčiauskas, K.; Peters, J. Quad-net obstacle course (http://www.cise.ufl.edu/research/SurfLab/shape_gallery.shtml, accessed 2017-09-05)

[39] Karčiauskas, K.; Peters, J. Bicubic polar subdivision, ACM Trans. Graph., Volume 26 (2007) no. 4, 14 pages | DOI | Zbl

[40] Karčiauskas, K.; Peters, J. Concentric Tesselation Maps and Curvature Continuous Guided Surfaces, Comput. Aided Geom. Des., Volume 24 (2007) no. 2, pp. 99-111 | DOI | Zbl

[41] Karčiauskas, K.; Peters, J. Surfaces with Polar Structure, Computing, Volume 79 (2007), pp. 309-315 | DOI | MR | Zbl

[42] Karčiauskas, K.; Peters, J. Finite Curvature Continuous Polar Patchworks, IMA Mathematics of Surfaces XIII Conference (Hancock, E.; Martin, R. R.; Sabin, M., eds.) (2009), pp. 222-234 | DOI | Zbl

[43] Karčiauskas, K.; Peters, J. Lens-shaped surfaces and C 2 subdivision, Computing, Volume 86 (2009) no. 2, pp. 171-183 | DOI | MR | Zbl

[44] Karčiauskas, K.; Peters, J. Biquintic G 2 surfaces via functionals, Comput. Aided Geom. Des. (2015), pp. 17-29 | DOI | Zbl

[45] Karčiauskas, K.; Peters, J. Can bi-cubic surfaces be class A?, Comput. Graph. Forum, Volume 34 (2015) no. 5, pp. 229-238 | DOI

[46] Karčiauskas, K.; Peters, J. Improved shape for multi-surface blends, Graph. Models, Volume 8 (2015), pp. 87-98 | DOI

[47] Karčiauskas, K.; Peters, J. Smooth multi-sided blending of biquadratic splines, Computers & Graphics, Volume 46 (2015), pp. 172-185 | DOI

[48] Karčiauskas, K.; Peters, J. Curvature continuous bi-4 constructions for scaffold- and sphere-like surfaces, Comput.-Aided Des., Volume 78 (2016), pp. 48-59 | DOI

[49] Karčiauskas, K.; Peters, J. Minimal bi-6 G 2 completion of bicubic spline surfaces, Comput. Aided Geom. Des., Volume 41 (2016), pp. 10-22 | DOI | MR | Zbl

[50] Karčiauskas, K.; Peters, J. Improved shape for refinable surfaces with singularly parameterized irregularities, Comput.-Aided Des., Volume 90 (2017), pp. 191-198 | DOI

[51] Karčiauskas, K.; Peters, J. Refinable G 1 functions on G 1 free-form surfaces, Comput. Aided Geom. Des., Volume 54 (2017), pp. 61-73 | DOI | MR | Zbl

[52] Karčiauskas, K.; Peters, J. Fair free-form surfaces that are almost everywhere parametrically C 2 , J. Comput. Appl. Math. (2018), pp. 1-10 | DOI | Zbl

[53] Karčiauskas, K.; Peters, J. Rapidly contracting subdivision yields finite, effectively C 2 surfaces, Computers & Graphics (2018), pp. 1-10 | DOI

[54] Karčiauskas, K.; Peters, J. Refinable bi-quartics for design and analysis, Comput.-Aided Des. (2018), pp. 1-10 | DOI

[55] Karčiauskas, K.; Peters, J. High quality refinable G-splines for locally quad-dominant meshes with T-gons, Comput. Graph. Forum, Volume 38 (2019) no. 5, pp. 151-161 | DOI

[56] Karčiauskas, K.; Peters, J. Localized G-splines for quad & T-gon meshes, Comput. Aided Geom. Des., Volume 71 (2019), pp. 244-254 | DOI | MR | Zbl

[57] Karčiauskas, K.; Peters, J. Refinable smooth surfaces for locally quad-dominant meshes with T-gons, Computers & Graphics, Volume 82 (2019), pp. 193-202 | DOI

[58] Karciauskas, K.; Peters, J.; Reif, U. Shape Characterization of Subdivision Surfaces – Case Studies, Comput. Aided Geom. Des., Volume 21 (2004) no. 6, pp. 601-614 | DOI | MR | Zbl

[59] Kiciak, P. Spline surfaces of arbitrary topology with continuous curvature and optimized shape, Comput.-Aided Des., Volume 45 (2013) no. 2, pp. 154-167 | DOI | MR

[60] Kraft, R. Adaptive und linear unabhängige Multilevel B-Splines und ihre Anwendungen, University of Stuttgart (1998) (Ph. D. Thesis) | MR | Zbl

[61] Li, K.; Qian, X. Isogeometric analysis and shape optimization via boundary integral, Comput.-Aided Des., Volume 43 (2011) no. 11, pp. 1427-1437 | DOI

[62] Loop, C. Second Order Smoothness over Extraordinary Vertices, SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, ACM Press (2004), pp. 169-178 | DOI

[63] Loop, C.; Schaefer, S. Approximating Catmull–Clark subdivision surfaces with bicubic patches, ACM Trans. Graph., Volume 27 (2008) no. 1, p. 8:1-8:11 | DOI

[64] Loop, C. T.; DeRose, T. D. A Multisided Generalization of Bézier Surfaces, ACM Trans. Graph., Volume 8 (1989) no. 3, pp. 204-234 | DOI | Zbl

[65] Loop, C. T.; Schaefer, S. G 2 Tensor Product Splines over Extraordinary Vertices, Comput. Graph. Forum, Volume 27 (2008) no. 5, pp. 1373-1382 | DOI

[66] Loop, C. T.; Schaefer, S.; Ni, T.; Castaño, I. Approximating subdivision surfaces with Gregory patches for hardware tessellation, ACM Trans. Graph., Volume 28 (2009) no. 5

[67] Lutterkort, D.; Peters, J. Optimized Refinable Enclosures of Multivariate Polynomial Pieces, Comput. Aided Geom. Des., Volume 18 (2002) no. 9, pp. 851-863 | DOI | MR | Zbl

[68] Marussig, B.; Hughes, T. J. R. A Review of Trimming in Isogeometric Analysis: Challenges, Data Exchange and Simulation Aspects, Arch. Comput. Methods Eng., Volume 25 (2018) no. 4, pp. 1059-1127 | DOI | MR

[69] Myles, A.; Karčiauskas, K.; Peters, J. Extending Catmull–Clark Subdivision and PCCM with Polar Structures, PG ’07: Proceedings of the 15th Pacific Conference on Computer Graphics and Applications, IEEE Computer Society (2007), pp. 313-320 | DOI

[70] Myles, A.; Karčiauskas, K.; Peters, J. Pairs of bi-cubic surface constructions supporting polar connectivity, Comput. Aided Geom. Des., Volume 25 (2008) no. 8, pp. 621-630 | DOI | MR | Zbl

[71] Myles, A.; Peters, J. Bi-3 C 2 Polar Subdivision, ACM Trans. Graph., Volume 28 (2009) no. 3 | DOI

[72] Myles, A.; Peters, J. C 2 Splines Covering Polar Configurations, Comput.-Aided Des., Volume 43 (2011) no. 11, pp. 1322-1329 | DOI

[73] Nguyen, T.; Karčiauskas, K.; Peters, J. A comparative study of several classical, discrete differential and isogeometric methods for solving Poisson’s equation on the disk, Axioms, Volume 3 (2014) no. 2, pp. 280-299 | DOI | Zbl

[74] Nguyen, T.; Karčiauskas, K.; Peters, J. C 1 finite elements on non-tensor-product 2d and 3d manifolds, Appl. Math. Comput., Volume 272 (2016) no. 1, pp. 148-158 | DOI | MR | Zbl

[75] Nguyen, T.; Peters, J. Refinable C 1 spline elements for irregular quad layout, Comput. Aided Geom. Des., Volume 43 (2016), pp. 123-130 | DOI | MR | Zbl

[76] Owen, S. J. A Survey of Unstructured Mesh Generation Technology, Proceedings of the 7th International Meshing Roundtable, IMR 1998, Dearborn, Michigan, USA, October 26-28, 1998 (1998), pp. 239-267

[77] Peters, J. Parametrizing singularly to enclose vertices by a smooth parametric surface, Proceedings of Graphics Interface ’91, Canadian Human-Computer Communications Society (1991), pp. 1-7 | DOI

[78] Peters, J. Smooth interpolation of a mesh of curves, Computing, Volume 7 (1991), pp. 221-247 | MR | Zbl

[79] Peters, J. Smooth free-form surfaces over irregular meshes generalizing quadratic splines, Comput. Aided Geom. Des., Volume 10 (1993), pp. 347-361 | DOI | MR | Zbl

[80] Peters, J. PN Quads (2000), pp. 1-2 (Technical report)

[81] Peters, J. Geometric Continuity, Handbook of Computer Aided Geometric Design, Elsevier (2002), pp. 193-229 | DOI

[82] Peters, J. On refinable tri-variate C 1 splines for box-complexes including irregular points and irregular edges, Mathematical Foundations of Isogeometric Analysis, Volume 33, Mathematisches Forschungsinstitut Oberwolfach (2019), pp. 33-35

[83] Peters, J.; Karčiauskas, K. An introduction to guided and polar surfacing, Mathematical Methods for Curves and Surfaces. 7th International Conference on Mathematical Methods for Curves and Surfaces (Toensberg, 2008) (Lecture Notes in Computer Science), Volume 5862, Springer (2010), pp. 299-315 | MR | Zbl

[84] Peters, J.; Reif, U. Subdivision Surfaces, Geometry and Computing, 3, Springer, 2008, i+204 pages | MR | Zbl

[85] Peters, J.; Wu, X. On the optimality of piecewise linear max-norm enclosures based on slefes, Curve and surface design: Saint Malo 2002 (Modern Methods in Mathematics), Nashboro Press (2003) | Zbl

[86] Peters, J.; Wu, X. SLEVEs for planar spline curves, Comput. Aided Geom. Des., Volume 21 (2004) no. 6, pp. 615-635 | DOI | MR | Zbl

[87] Pfluger, Pia R.; Neamtu, Marian On degenerate surface patches, Numer. Algorithms, Volume 5 (1993) no. 11, pp. 569-575 | DOI | MR | Zbl

[88] Prautzsch, H. Freeform splines, Comput. Aided Geom. Des., Volume 14 (1997) no. 3, pp. 201-206 | DOI | MR | Zbl

[89] Ray, N.; Li, W. C.; Lévy, B.; Sheffer, A.; Alliez, P. Periodic Global Parameterization, ACM Trans. Graph., Volume 25 (2006) no. 4, pp. 1460-1485 | DOI

[90] Reif, U. TURBS—topologically unrestricted rational B-splines, Constr. Approx., Volume 14 (1998) no. 1, pp. 57-77 | DOI | MR | Zbl

[91] Sabin, M. Transfinite Surface Interpolation, Mathematics of Surfaces (Mullineux, Glen, ed.), Volume VI, Clarendon Press (1996), pp. 517-534

[92] Salvi, P.; Várady, T. Multi-sided Bézier surfaces over concave polygonal domains, Computers & Graphics, Volume 74 (2018), pp. 56-65 | DOI

[93] Sangalli, G.; Takacs, T.; Vazquez, R. Unstructured spline spaces for isogeometric analysis based on spline manifolds, Comput. Aided Geom. Des., Volume 47 (2016), pp. 61-82 | DOI | MR | Zbl

[94] Schramm, U.; Pilkey, W. D. The coupling of geometric descriptions and finite elements usin+++g NURBS - A study in shape optimization, Finite Elem. Anal. Des., Volume 340 (1993), pp. 11-34 | DOI | Zbl

[95] Schumaker, L. L.; Lai, M.-J. Spline Functions on Triangulations, Cambridge University Press, 2007, pp. 1-677 | Zbl

[96] Sederberg, T. W.; Zheng, J.; Bakenov, A.; Nasri, A. T-splines and T-NURCCs, Proceedings of ACM SIGGRAPH 2003 (Hodgins, Jessica; Hart, John C., eds.), ACM Press (2003), pp. 477-484 | DOI

[97] Shi, K.-L.; Yong, J.-H.; Tang, L.; Sun, J.-G.; Paul, J.-C. Polar NURBS Surface with Curvature Continuity, Comput. Graph. Forum, Volume 32 (2013) no. 7, pp. 363-370 | DOI

[98] Shyy, Y. K.; Fleury, C.; Izadpanah, K. Shape Optimal Design using higher-order elements, Comput. Methods Appl. Mech. Eng., Volume 71 (1988), pp. 99-116 | DOI | Zbl

[99] Smith, J.; Schaefer, S. Selective Degree Elevation for Multi-Sided Bézier Patches, Comput. Graph. Forum, Volume 34 (2015) no. 2, pp. 609-615 | DOI

[100] Várady, T.; Rockwood, A. P.; Salvi, P. Transfinite surface interpolation over irregular n-sided domains, Comput.-Aided Des., Volume 43 (2011) no. 11, pp. 1330-1340 | DOI

[101] Várady, T.; Salvi, P.; Karikó, G. A Multi-sided Bézier Patch with a Simple Control Structure, Comput. Graph. Forum, Volume 35 (2016) no. 2, pp. 307-317 | DOI

[102] Vaxman, A.; Campen, M.; Diamanti, O.; Panozzo, D.; Bommes, D.; Hildebrandt, K.; Ben-Chen, M. Directional Field Synthesis, Design, and Processing, SIGGRAPH ’17: ACM SIGGRAPH 2017 Courses, ACM Press (2016) | DOI

[103] Vlachos, A.; Peters, J.; Boyd, C.; Mitchell, Jason L. Curved PN Triangles, Symposium on Interactive 3D Graphics (Bi-Annual Conference Series), ACM Press (2001), pp. 159-166

[104] Wang, X.; Qian, X. An optimization approach for constructing trivariate B-spline solids, Comput.-Aided Des., Volume 46 (2014), pp. 179-191 | DOI | MR

[105] Wikipedia contributors Class_A_surfaces (http://en.wikipedia.org/wiki/Class_A_surfaces, accessed Jan 2017)

[106] Wikipedia contributors Freeform surface modelling — Wikipedia, The Free Encyclopedia, 2018 (https://en.wikipedia.org/w/index.php?title=Freeform_surface_modelling&oldid=871471382, accessed 2018-12-31)

[107] Yamada, Y. Clay Modeling: Techniques for giving three-dimensional form to idea, Nissan Design Center, Kaneko Enterprises, 1997

[108] Yang, P.; Qian, X. A B-spline-based approach to heterogeneous objects design and analysis, Comput.-Aided Des., Volume 39 (2007) no. 2, pp. 95-111 | DOI

[109] Ye, X. Curvature continuous interpolation of curve meshes, Comput. Aided Geom. Des., Volume 14 (1997) no. 2, pp. 169-190 | DOI | MR | Zbl

[110] Yeo, Y. In; Bhandare, S.; Peters, J. Efficient Pixel-accurate Rendering of Animated Curved Surfaces, 8th International Conference on Mathematical Methods for Curves and Surfaces, Oslo June 2012 (Lecture Notes in Computer Science), Volume 8177, Springer (2014), pp. 491-509 | MR

Cité par Sources :