Cubic Lagrange elements satisfying exact incompressibility
The SMAI journal of computational mathematics, Tome 4 (2018), pp. 345-374.

We prove that an analog of the Scott-Vogelius finite elements are inf-sup stable on certain nondegenerate meshes for piecewise cubic velocity fields. We also characterize the divergence of the velocity space on such meshes. In addition, we show how such a characterization relates to the dimension of C 1 piecewise quartics on the same mesh.

Publié le :
DOI : https://doi.org/10.5802/smai-jcm.38
Classification : 65N30,  65N12,  76D07,  65N85
@article{SMAI-JCM_2018__4__345_0,
     author = {Guzm\'an, Johnny and Scott, L. Ridgway},
     title = {Cubic {Lagrange} elements satisfying exact incompressibility},
     journal = {The SMAI journal of computational mathematics},
     pages = {345--374},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {4},
     year = {2018},
     doi = {10.5802/smai-jcm.38},
     zbl = {1416.76109},
     mrnumber = {3883673},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/smai-jcm.38/}
}
TY  - JOUR
AU  - Guzmán, Johnny
AU  - Scott, L. Ridgway
TI  - Cubic Lagrange elements satisfying exact incompressibility
JO  - The SMAI journal of computational mathematics
PY  - 2018
DA  - 2018///
SP  - 345
EP  - 374
VL  - 4
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/smai-jcm.38/
UR  - https://zbmath.org/?q=an%3A1416.76109
UR  - https://www.ams.org/mathscinet-getitem?mr=3883673
UR  - https://doi.org/10.5802/smai-jcm.38
DO  - 10.5802/smai-jcm.38
LA  - en
ID  - SMAI-JCM_2018__4__345_0
ER  - 
Guzmán, Johnny; Scott, L. Ridgway. Cubic Lagrange elements satisfying exact incompressibility. The SMAI journal of computational mathematics, Tome 4 (2018), pp. 345-374. doi : 10.5802/smai-jcm.38. http://www.numdam.org/articles/10.5802/smai-jcm.38/

[1] Ahmed, Naveed; Linke, Alexander; Merdon, Christian Towards pressure-robust mixed methods for the incompressible Navier–Stokes equations, International Conference on Finite Volumes for Complex Applications (2017), pp. 351-359 | Zbl 1391.76295

[2] Alfeld, Peter; Piper, Bruce; Schumaker, Larry L. An explicit basis for C 1 quartic bivariate splines, SIAM Journal on Numerical Analysis, Volume 24 (1987) no. 4, pp. 891-911 | Article | MR 899711 | Zbl 0658.65008

[3] Anbo, Le On the dimension of spaces of pp functions with boundary conditions, Approximation Theory and its Applications, Volume 5 (1989) no. 4, pp. 19-29 | MR 1055662 | Zbl 0699.41013

[4] Arnold, Douglas N; Qin, Jinshui Quadratic velocity/linear pressure Stokes elements, Advances in computer methods for partial differential equations, Volume 7 (1992), pp. 28-34

[5] Bernardi, Christine; Raugel, Genevieve Analysis of some finite elements for the Stokes problem, Mathematics of Computation (1985), pp. 71-79 | Article | MR 771031 | Zbl 0563.65075

[6] Brenner, Susanne C.; Scott, L. Ridgway The mathematical theory of finite element methods, 15, Springer Science & Business Media, 2008 | MR 2373954 | Zbl 1135.65042

[7] Chui, C.K.; Schumaker, L.L. On spaces of piecewise polynomials with boundary conditions. II. Type-1 triangulations., Second Edmonton Conference on Approximation Theory (Ditzian, Zeev, ed.) (CMS Conf. Proc., 3), Amer. Math. Soc., Providence, R.I., 1983

[8] Falk, Richard S; Neilan, Michael Stokes complexes and the construction of stable finite elements with pointwise mass conservation, SIAM Journal on Numerical Analysis, Volume 51 (2013) no. 2, pp. 1308-1326 | Article | MR 3045658 | Zbl 1268.76032

[9] Guzmán, Johnny; Neilan, Michael Conforming and divergence-free Stokes elements in three dimensions, IMA Journal of Numerical Analysis, Volume 34 (2014) no. 4, pp. 1489-1508 | Article | MR 3269433 | Zbl 1305.76056

[10] Guzmán, Johnny; Neilan, Michael Conforming and divergence-free Stokes elements on general triangular meshes, Mathematics of Computation, Volume 83 (2014) no. 285, pp. 15-36 | Article | MR 3120580 | Zbl 1322.76041

[11] Guzman, Johnny; Neilan, Michael Inf-sup stable finite elements on barycentric refinements producing divergence–free approximations in arbitrary dimensions, arXiv preprint arXiv:1710.08044 (2017) | Zbl 1407.65289

[12] Guzmán, Johnny; Scott, L. Ridgway The Scott-Vogelius finite elements revisted, Mathematics of Computation, Volume to appear (2017) | Zbl 1405.65150

[13] Harald Christiansen, S.; Hu, K. Generalized Finite Element Systems for smooth differential forms and Stokes problem, ArXiv e-prints (2016) | arXiv:1605.08657

[14] John, Volker; Linke, Alexander; Merdon, Christian; Neilan, Michael; Rebholz, Leo G On the divergence constraint in mixed finite element methods for incompressible flows, SIAM Review (2016) | Zbl 1426.76275

[15] Lai, Ming-Jun; Schumaker, Larry L Spline functions on triangulations, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2007 no. 110 | Zbl 1185.41001

[16] Morgan, J.; Scott, L. R. A nodal basis for C 1 piecewise polynomials of degree n5, Math. Comp., Volume 29 (1975), pp. 736-740 | MR 375740

[17] Morgan, John; Scott, L. R. The Dimension of the Space of C 1 Piecewise–Polynomials (1990) no. 78 (Research Report UH/MD)

[18] Neilan, Michael Discrete and conforming smooth de Rham complexes in three dimensions, Mathematics of Computation, Volume 84 (2015) no. 295, pp. 2059-2081 | Article | MR 3356019 | Zbl 1319.65115

[19] Qin, Jinshui On the convergence of some low order mixed finite elements for incompressible fluids (1994) (Ph. D. Thesis) | MR 2691498

[20] Qin, Jinshui; Zhang, Shangyou Stability and approximability of the P1–P0 element for Stokes equations, International journal for numerical methods in fluids, Volume 54 (2007) no. 5, pp. 497-515 | MR 2322456 | Zbl 1204.76020

[21] Scott, L. Ridgway; Vogelius, Micheal Conforming Finite Element Methods for Incompressible and Nearly Incompressible Continua., Large Scale Computations in Fluid Mechanics, B. E. Engquist, et al., eds., Volume 22 (Part 2) (1985), pp. 221-244 | Zbl 0582.76028

[22] Scott, LR; Vogelius, Michael Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO-Modélisation mathématique et analyse numérique, Volume 19 (1985) no. 1, pp. 111-143 | Numdam | MR 813691 | Zbl 0608.65013

[23] Strang, Gilbert Piecewise polynomials and the finite element method, Bulletin of the American Mathematical Society, Volume 79 (1973) no. 6, pp. 1128-1137 | Article | MR 327060 | Zbl 0285.41009

[24] Vogelius, Michael A right-inverse for the divergence operator in spaces of piecewise polynomials, Numerische Mathematik, Volume 41 (1983) no. 1, pp. 19-37 | Article | MR 696548 | Zbl 0504.65060

[25] Zhang, Shangyou A new family of stable mixed finite elements for the 3d Stokes equations, Mathematics of computation, Volume 74 (2005) no. 250, pp. 543-554 | Article | MR 2114637 | Zbl 1085.76042

[26] Zhang, Shangyou Divergence-free finite elements on tetrahedral grids for k6, Mathematics of Computation, Volume 80 (2011) no. 274, pp. 669-695 | Article | MR 2772092 | Zbl 1410.76204

Cité par Sources :