A class of robust numerical schemes to compute front propagation
The SMAI Journal of computational mathematics, Tome 4 (2018), pp. 375-397.

In this work a class of finite volume schemes is proposed to numerically solve equations involving propagating fronts. They fall into the class of Hamilton-Jacobi equations. Finite volume schemes based on staggered grids and initially developed to compute fluid flows, are adapted to the G-equation, using the Hamilton-Jacobi theoretical framework. The designed scheme has a maximum principle property and is consistent and monotonous on Cartesian grids. A convergence property is then obtained for the scheme on Cartesian grids and numerical experiments evidence the convergence of the scheme on more general meshes.

Publié le :
DOI : 10.5802/smai-jcm.39
Classification : 35F21, 65N08, 65N12
Mots clés : Finite volumes, Hamilton-Jacobi, Stability, Convergence
Therme, Nicolas 1

1 Université de Nantes, Laboratoire de Mathématiques Jean Leray, CNRS UMR 6629, 2 rue de la Houssinière, BP 92208, 44322 Nantes, France
@article{SMAI-JCM_2018__4__375_0,
     author = {Therme, Nicolas},
     title = {A class of robust numerical schemes to compute front propagation},
     journal = {The SMAI Journal of computational mathematics},
     pages = {375--397},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {4},
     year = {2018},
     doi = {10.5802/smai-jcm.39},
     zbl = {1416.65299},
     mrnumber = {3883674},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/smai-jcm.39/}
}
TY  - JOUR
AU  - Therme, Nicolas
TI  - A class of robust numerical schemes to compute front propagation
JO  - The SMAI Journal of computational mathematics
PY  - 2018
SP  - 375
EP  - 397
VL  - 4
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/smai-jcm.39/
DO  - 10.5802/smai-jcm.39
LA  - en
ID  - SMAI-JCM_2018__4__375_0
ER  - 
%0 Journal Article
%A Therme, Nicolas
%T A class of robust numerical schemes to compute front propagation
%J The SMAI Journal of computational mathematics
%D 2018
%P 375-397
%V 4
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/smai-jcm.39/
%R 10.5802/smai-jcm.39
%G en
%F SMAI-JCM_2018__4__375_0
Therme, Nicolas. A class of robust numerical schemes to compute front propagation. The SMAI Journal of computational mathematics, Tome 4 (2018), pp. 375-397. doi : 10.5802/smai-jcm.39. http://www.numdam.org/articles/10.5802/smai-jcm.39/

[1] Abgrall, R. Numerical discretization of the first-order Hamilton-Jacobi equation on triangular meshes, Comm. Pure Appl. Math., Volume 49 (1996) no. 12, pp. 1339-1373 | DOI | MR | Zbl

[2] Augoula, S.; Abgrall, R. High order numerical discretization for Hamilton-Jacobi equations on triangular meshes, J. Sci. Comput., Volume 15 (2000) no. 2, pp. 197-229 | DOI | MR | Zbl

[3] Barles, G. Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques & Applications (Berlin) [Mathematics & Applications], 17, Springer-Verlag, Paris, 1994, x+194 pages | MR | Zbl

[4] Barles, G.; Souganidis, P. E. Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal., Volume 4 (1991) no. 3, pp. 271-283 | DOI | MR | Zbl

[5] Barth, T. J.; Sethian, J. A. Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains, J. Comput. Phys., Volume 145 (1998) no. 1, pp. 1-40 | DOI | MR | Zbl

[6] Bryson, S.; Levy, D. High-order central WENO schemes for multidimensional Hamilton-Jacobi equations, SIAM J. Numer. Anal., Volume 41 (2003) no. 4, p. 1339-1369 (electronic) | DOI | MR

[7] Chalons, C.; Girardin, M.; Kokh, S. An all-regime Lagrange-Projection like scheme for 2D homogeneous models for two-phase flows on unstructured meshes, Journal of Computational Physics, Volume 335 (2017), pp. 885 -904 http://www.sciencedirect.com/science/article/pii/S002199911730027X | DOI | MR | Zbl

[8] Ciarlet, P. G. Basic Error Estimates for Elliptic Problems, Handbook of Numerical Analysis, Volume II (Ciarlet, P.; Lions, J.L., eds.), North Holland, 1991, pp. 17-351 | DOI | Zbl

[9] Crandall, M. G.; Lions, P.-L. Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., Volume 277 (1983) no. 1, pp. 1-42 | DOI | MR | Zbl

[10] Crandall, M. G.; Lions, P.-L. Two approximations of solutions of Hamilton-Jacobi equations, Math. Comp., Volume 43 (1984) no. 167, pp. 1-19 | DOI | MR | Zbl

[11] Dafermos, C. M. Hyperbolic conservation laws in continuum physics., Berlin: Springer, 2016, xxxviii + 826 pages | DOI | Zbl

[12] Dellacherie, S.; Jung, J.; Omnes, P.; Raviart, P.-A. Construction of modified Godunov-type schemes accurate at any Mach number for the compressible Euler system., Math. Models Methods Appl. Sci., Volume 26 (2016) no. 13, pp. 2525-2615 | DOI | MR | Zbl

[13] Eymard, R.; Gallouët, T.; Herbin, R. Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal., Volume 30 (2010) no. 4, pp. 1009-1043 | DOI | MR | Zbl

[14] Grapsas, D. Schémas à mailles décalés pour des modèles d’écoulements compressible réactifs, Université Aix-Marseille (2018) (Ph. D. Thesis)

[15] Grapsas, D.; Herbin, R.; Kheriji, W.; Latché, J.-C. An unconditionally stable staggered pressure correction scheme for the compressible Navier-Stokes equations, SMAI Journal of Computational Mathematics, Volume 2 (2016), pp. 51-97 | DOI | Numdam | MR | Zbl

[16] Harlow, F.H.; Amsden, A.A. Numerical Calculation of Almost Incompressible Flow, Journal of Computational Physics, Volume 3 (1968), pp. 80-93 | DOI

[17] Harlow, F.H.; Amsden, A.A. A Numerical Fluid Dynamics Calculation Method for All Flow Speeds, Journal of Computational Physics, Volume 8 (1971), pp. 197-213 | DOI | Zbl

[18] Harlow, F.H.; Welsh, J.E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Physics of Fluids, Volume 8 (1965), pp. 2182-2189 | DOI | MR

[19] Herbin, R.; Kheriji, W.; Latché, J.-C. Staggered schemes for all speed flows., ESAIM, Proc., Volume 35 (2012), pp. 122-150 | DOI | Zbl

[20] Herbin, R.; Kheriji, W.; Latché, J.-C. On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations, ESAIM Math. Model. Numer. Anal., Volume 48 (2014) no. 6, pp. 1807-1857 | DOI | Numdam | MR | Zbl

[21] Herbin, R.; Latché, J.-C.; Nguyen, T. T. Explicit staggered schemes for the compressible Euler equations, Applied mathematics in Savoie—AMIS 2012: Multiphase flow in industrial and environmental engineering (ESAIM Proc.), Volume 40, EDP Sci., Les Ulis, 2013, pp. 83-102 | DOI | MR | Zbl

[22] IRSN P 2 REMICS: Computational Fluid Dynamics software for the simulation of dispersion and explosion (https://gforge.irsn.fr/gf/project/p2remics)

[23] Kossioris, G.; Makridakis, Ch.; Souganidis, P. E. Finite volume schemes for Hamilton-Jacobi equations, Numer. Math., Volume 83 (1999) no. 3, pp. 427-442 | DOI | MR | Zbl

[24] Lions, P.-L. Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics, 69, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982, iv+317 pages | MR

[25] Osher, S.; Sethian, J. A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., Volume 79 (1988) no. 1, pp. 12-49 | DOI | MR | Zbl

[26] Osher, S.; Shu, C.-W. High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations, SIAM J. Numer. Anal., Volume 28 (1991) no. 4, pp. 907-922 | DOI | MR | Zbl

[27] Penel, Y.; Dellacherie, S.; Després, B. Coupling strategies for compressible-low Mach number flows., Math. Models Methods Appl. Sci., Volume 25 (2015) no. 6, pp. 1045-1089 | DOI | MR | Zbl

[28] Piar, L.; Babik, F.; Herbin, R.; Latché, J.-C. A formally second-order cell centred scheme for convection-diffusion equations on general grids, Internat. J. Numer. Methods Fluids, Volume 71 (2013) no. 7, pp. 873-890 | DOI | MR | Zbl

[29] Serna, S.; Qian, J. Fifth-order weighted power-ENO schemes for Hamilton-Jacobi equations, J. Sci. Comput., Volume 29 (2006) no. 1, pp. 57-81 | DOI | MR | Zbl

[30] Sethian, J. A.; Vladimirsky, A. Fast methods for the eikonal and related Hamilton-Jacobi equations on unstructured meshes, Proc. Natl. Acad. Sci. USA, Volume 97 (2000) no. 11, pp. 5699-5703 | DOI | MR | Zbl

[31] Souganidis, P. E. Approximation schemes for viscosity solutions of Hamilton-Jacobi equations, J. Differential Equations, Volume 59 (1985) no. 1, pp. 1-43 | DOI | MR | Zbl

[32] Yan, J.; Osher, S. A local discontinuous Galerkin method for directly solving Hamilton-Jacobi equations, J. Comput. Phys., Volume 230 (2011) no. 1, pp. 232-244 | DOI | MR | Zbl

Cité par Sources :