Dynamics of the focusing critical wave equation
Séminaire Laurent Schwartz — EDP et applications (2015-2016), Exposé no. 8, 9 p.
Publié le :
DOI : 10.5802/slsedp.97
Duyckaerts, Thomas 1

1 LAGA. Institut Galilée. Université Paris 13 France
@article{SLSEDP_2015-2016____A8_0,
     author = {Duyckaerts, Thomas},
     title = {Dynamics of the focusing critical wave equation},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:8},
     pages = {1--9},
     publisher = {Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique},
     year = {2015-2016},
     doi = {10.5802/slsedp.97},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/slsedp.97/}
}
TY  - JOUR
AU  - Duyckaerts, Thomas
TI  - Dynamics of the focusing critical wave equation
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:8
PY  - 2015-2016
SP  - 1
EP  - 9
PB  - Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique
UR  - http://www.numdam.org/articles/10.5802/slsedp.97/
DO  - 10.5802/slsedp.97
LA  - en
ID  - SLSEDP_2015-2016____A8_0
ER  - 
%0 Journal Article
%A Duyckaerts, Thomas
%T Dynamics of the focusing critical wave equation
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:8
%D 2015-2016
%P 1-9
%I Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique
%U http://www.numdam.org/articles/10.5802/slsedp.97/
%R 10.5802/slsedp.97
%G en
%F SLSEDP_2015-2016____A8_0
Duyckaerts, Thomas. Dynamics of the focusing critical wave equation. Séminaire Laurent Schwartz — EDP et applications (2015-2016), Exposé no. 8, 9 p. doi : 10.5802/slsedp.97. http://www.numdam.org/articles/10.5802/slsedp.97/

[1] Bahouri, H., and Gérard, P. High frequency approximation of solutions to critical nonlinear wave equations. Amer. J. Math. 121, 1 (1999), 131–175.

[2] Bahouri, H., and Shatah, J. Decay estimates for the critical semilinear wave equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 15, 6 (1998), 783–789.

[3] Bizoń, P., Chmaj, T., and Tabor, Z. On blowup for semilinear wave equations with a focusing nonlinearity. Nonlinearity 17, 6 (2004), 2187–2201.

[4] Bulut, A., Czubak, M., Li, D., Pavlović, N., and Zhang, X. Stability and unconditional uniqueness of solutions for energy critical wave equations in high dimensions. Comm. Partial Differential Equations 38, 4 (2013), 575–607.

[5] Côte, R., and Zaag, H. Construction of a multisoliton blowup solution to the semilinear wave equation in one space dimension. Comm. Pure Appl. Math. 66, 10 (2013), 1541–1581.

[6] del Pino, M., Musso, M., Pacard, F., and Pistoia, A. Large energy entire solutions for the Yamabe equation. J. Differential Equations 251, 9 (2011), 2568–2597.

[7] Ding, W. Y. On a conformally invariant elliptic equation on R n . Comm. Math. Phys. 107, 2 (1986), 331–335.

[8] Donninger, R. Strichartz estimates in similarity coordinates and stable blowup for the critical wave equation, 2015. | arXiv

[9] Donninger, R., Huang, M., Krieger, J., and Schlag, W. Exotic blowup solutions for the u 5 focusing wave equation in 3 . Michigan Math. J. 63, 3 (2014), 451–501.

[10] Donninger, R., and Krieger, J. Nonscattering solutions and blowup at infinity for the critical wave equation. Math. Ann. 357, 1 (2013), 89–163.

[11] Donninger, R., and Schörkhuber, B. On Blowup in Supercritical Wave Equations. Comm. Math. Phys. 346, 3 (2016), 907–943.

[12] Duyckaerts, T., Jia, H., Kenig, C., and Merle, F. Soliton resolution along a sequence of times for the focusing energy critical wave equation, 2016. | arXiv

[13] Duyckaerts, T., Kenig, C., and Merle, F. Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: the nonradial case. J. Eur. Math. Soc. (JEMS) 14, 5 (2012), 1389–1454.

[14] Duyckaerts, T., and Merle, F. Dynamics of threshold solutions for energy-critical wave equation. Int. Math. Res. Pap. IMRP (2008), Art ID rpn002, 67.

[15] Eckhaus, W., and Schuur, P. The emergence of solitons of the Korteweg-de Vries equation from arbitrary initial conditions. Math. Methods Appl. Sci. 5, 1 (1983), 97–116.

[16] Ginibre, J., and Velo, G. Generalized Strichartz inequalities for the wave equation. J. Funct. Anal. 133, 1 (1995), 50–68.

[17] Grillakis, M. G. Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity. Ann. of Math. (2) 132, 3 (1990), 485–509.

[18] Grillakis, M. G. Regularity for the wave equation with a critical nonlinearity. Comm. Pure Appl. Math. 45, 6 (1992), 749–774.

[19] Grillakis, M. G. Energy estimates and the wave map problem. Comm. Partial Differential Equations 23, 5-6 (1998), 887–911.

[20] Hillairet, M., and Raphaël, P. Smooth type II blow-up solutions to the four-dimensional energy-critical wave equation. Anal. PDE 5, 4 (2012), 777–829.

[21] Jendrej, J. Construction of type II blow-up solutions for the energy-critical wave equation in dimension 5, 2015. | arXiv

[22] Jendrej, J. Construction of two-bubble solutions for energy-critical wave equations, 2016. | arXiv

[23] Jia, H. Soliton resolution along a sequence of times with dispersive error for type II singular solutions to focusing energy critical wave equation, 2015. | arXiv

[24] Kapitanski, L. Global and unique weak solutions of nonlinear wave equations. Math. Res. Lett. 1, 2 (1994), 211–223.

[25] Kenig, C. E., and Merle, F. Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201, 2 (2008), 147–212.

[26] Krieger, J., and Nahas, J. Instability of type II blow up for the quintic nonlinear wave equation on 3+1 . Bull. Soc. Math. France 143, 2 (2015), 339–355.

[27] Krieger, J., Nakanishi, K., and Schlag, W. Center-stable manifold of the ground state in the energy space for the critical wave equation. Math. Ann. 361, 1-2 (2015), 1–50.

[28] Krieger, J., and Schlag, W. On the focusing critical semi-linear wave equation. Amer. J. Math. 129, 3 (2007), 843–913.

[29] Krieger, J., and Schlag, W. Non-generic blow-up solutions for the critical focusing NLS in 1-D. J. Eur. Math. Soc. (JEMS) 11, 1 (2009), 1–125.

[30] Krieger, J., and Schlag, W. Full range of blow up exponents for the quintic wave equation in three dimensions. J. Math. Pures Appl. (9) 101, 6 (2014), 873–900.

[31] Martel, Y., and Merle, F. Construction of Multi-Solitons for the Energy-Critical Wave Equation in Dimension 5. Arch. Ration. Mech. Anal. 222, 3 (2016), 1113–1160.

[32] Merle, F., and Zaag, H. Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension. J. Funct. Anal. 253, 1 (2007), 43–121.

[33] Merle, F., and Zaag, H. Blow-up behavior outside the origin for a semilinear wave equation in the radial case. Bull. Sci. Math. 135, 4 (2011), 353–373.

[34] Nakanishi, K. Scattering theory for the nonlinear Klein-Gordon equation with Sobolev critical power. Internat. Math. Res. Notices, 1 (1999), 31–60.

[35] Shatah, J., and Struwe, M. Regularity results for nonlinear wave equations. Ann. of Math. (2) 138, 3 (1993), 503–518.

[36] Shatah, J., and Struwe, M. Well-posedness in the energy space for semilinear wave equations with critical growth. Internat. Math. Res. Notices, 7 (1994), 303ff., approx. 7 pp. (electronic).

[37] Sterbenz, J., and Tataru, D. Regularity of wave-maps in dimension 2+1. Comm. Math. Phys. 298, 1 (2010), 231–264.

[38] Tao, T. Spacetime bounds for the energy-critical nonlinear wave equation in three spatial dimensions. Dyn. Partial Differ. Equ. 3, 2 (2006), 93–110.

[39] Tao, T. Global regularity of wave maps III. large energy from 1+2 to hyperbolic spaces, 2008. | arXiv

Cité par Sources :