Stable self-similar blow-up dynamics for slightly L 2 -supercritical generalized KDV equations
Séminaire Laurent Schwartz — EDP et applications (2015-2016), Exposé no. 19, 9 p.

In this paper we consider the slightly L 2 -supercritical gKdV equations t u+(u xx +u|u| p-1 ) x =0, with the nonlinearity 5<p<5+ε and 0<ε1 . We will prove the existence and stability of a blow-up dynamics with self-similar blow-up rate in the energy space H 1 and give a specific description of the formation of the singularity near the blow-up time.

Publié le :
DOI : 10.5802/slsedp.93
Lan, Yang 1

1 Laboratoire de Mathématiques d’Orsay Univ. Paris-Sud, CNRS, Université Paris-Saclay 91405 Orsay France
@article{SLSEDP_2015-2016____A19_0,
     author = {Lan, Yang},
     title = {Stable self-similar blow-up dynamics for slightly $L^2$-supercritical generalized {KDV} equations},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:19},
     pages = {1--9},
     publisher = {Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique},
     year = {2015-2016},
     doi = {10.5802/slsedp.93},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/slsedp.93/}
}
TY  - JOUR
AU  - Lan, Yang
TI  - Stable self-similar blow-up dynamics for slightly $L^2$-supercritical generalized KDV equations
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:19
PY  - 2015-2016
SP  - 1
EP  - 9
PB  - Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique
UR  - http://www.numdam.org/articles/10.5802/slsedp.93/
DO  - 10.5802/slsedp.93
LA  - en
ID  - SLSEDP_2015-2016____A19_0
ER  - 
%0 Journal Article
%A Lan, Yang
%T Stable self-similar blow-up dynamics for slightly $L^2$-supercritical generalized KDV equations
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:19
%D 2015-2016
%P 1-9
%I Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique
%U http://www.numdam.org/articles/10.5802/slsedp.93/
%R 10.5802/slsedp.93
%G en
%F SLSEDP_2015-2016____A19_0
Lan, Yang. Stable self-similar blow-up dynamics for slightly $L^2$-supercritical generalized KDV equations. Séminaire Laurent Schwartz — EDP et applications (2015-2016), Exposé no. 19, 9 p. doi : 10.5802/slsedp.93. http://www.numdam.org/articles/10.5802/slsedp.93/

[1] J. L. Bona, V. A. Dougalis, O. A. Karakashian, and W. R. McKinney, Conservative, high-order numerical schemes for the generalized Korteweg de Vries equation, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 351 (1995), no. 1695, 107–164.

[2] J. L. Bona and F. B. Weissler, Similarity solutions of the generalized Korteweg-de Vries equation, Mathematical Proceedings of the Cambridge Philosophical Society 127 (1999), no. 02, 323–351.

[3] R. Côte, Construction of solutions to L 2 -critical KdV equation with a given asymptotic behavior, Duke Math. J. 138 (2007), no. 3, 487–531.

[4] D. B. Dix and W. R. McKinney, Numerical computations of self-similar blow-up solutions of the generalized Korteweg-de Vries equation, Differential and Integral Equations 11 (1998), no. 5, 679–723.

[5] D. Foschi, Inhomogeneous Strichartz estimates, Journal of Hyperbolic Differential Equations 2 (2005), no. 1, 1–24.

[6] T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in applied mathematics 8 (1983), 93–128.

[7] M. Keel and T. Tao, Endpoint Strichartz estimates, American Journal of Mathematics 120 (1998), no. 5, 955–980.

[8] C. E. Kenig, G. Ponce, and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Communications on Pure and Applied Mathematics 46 (1993), no. 4, 527–620.

[9] H. Koch, Self-similar solutions to super-critical gKdV, Nonlinearity 28 (2015), no. 3, 545–575.

[10] H. Koch, D. Tataru, and M. Vişan, Dispersive equations and nonlinear waves, Springer, 2014.

[11] D. J. Korteweg and G. De Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 39 (1895), no. 240, 422–443.

[12] Y. Lan, Stable self-similar blow-up dynamics for slightly L 2 -supercritical generalized KdV equations, Communications in Mathematical Physics 345 (2016), no. 1, 223–269.

[13] Y. Martel and F. Merle, Blow up in finite time and dynamics of blow up solutions for the L 2 –critical generalized KdV equation, Journal of the American Mathematical Society 15 (2002), no. 3, 617–664.

[14] —, Nonexistence of blow-up solution with minimal L 2 -mass for the critical gKdV equation, Duke Mathematical Journal 115 (2002), no. 2, 385–408.

[15] —, Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation, Annals of Mathematics 155 (2002), no. 1, 235–280.

[16] Y. Martel, F. Merle, and P. Raphaël, Blow up for the critical generalized Korteweg-de Vries equation I: Dynamics near the soliton, Acta Mathematica 212 (2014), no. 1, 59–140.

[17] —, Blow up for the critical gKdV equation II: minimal mass blow up, To appear in JEMS (2015).

[18] —, Blow up for the critical gKdV equation III: exotic regimes, To appear in Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2015).

[19] F. Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation, Journal of the American Mathematical Society 14 (2001), no. 3, 555–578.

[20] F. Merle, P. Raphaël, and J. Szeftel, Stable self-similar blow-up dynamics for slightly L 2 super-critical NLS equations, Geometric and Functional Analysis 20 (2010), no. 4, 1028–1071.

[21] —, On collapsing ring blow up solutions to the mass supercritical NLS, Duke Math. J. 168 (2014), no. 2, 369–431.

[22] P. Raphaël, Existence and stability of a solution blowing up on a sphere for an L 2 -supercritical nonlinear Schrödinger equation, Duke Mathematical Journal 134 (2006), no. 2, 199–258.

[23] P. Raphaël and J. Szeftel, Standing ring blow up solutions to the N-dimensional quintic nonlinear Schrödinger equation, Communications in Mathematical Physics 290 (2009), no. 3, 973–996.

[24] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Communications in Mathematical Physics 87 (1983), no. 4, 567–576.

[25] —, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM journal on mathematical analysis 16 (1985), no. 3, 472–491.

[26] —, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Communications on Pure and Applied Mathematics 39 (1986), no. 1, 51–67.

Cité par Sources :