Construction of two-bubble solutions for some energy-critical wave equations
Séminaire Laurent Schwartz — EDP et applications (2015-2016), Exposé no. 21, 10 p.

We present a construction of pure two-bubbles for some energy-critical wave equations, that is solutions which in one time direction approach a superposition of two stationary states both centered at the origin, but asymptotically decoupled in scale. Our solution exists globally, with one bubble at a fixed scale and the other concentrating in infinite time, with an error tending to 0 in the energy space. We treat the cases of the power nonlinearity in space dimension 6, the radial Yang-Mills equation and the equivariant wave maps equation with equivariance class k3. The concentration speed of the second bubble is exponential for the first two models and a power function in the last case.

Publié le :
DOI : 10.5802/slsedp.90
Jendrej, Jacek 1

1 CMLS, École polytechnique, CNRS, Université Paris-Saclay 91128 Palaiseau Cedex France
@article{SLSEDP_2015-2016____A21_0,
     author = {Jendrej, Jacek},
     title = {Construction of two-bubble solutions for some energy-critical wave equations},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:21},
     pages = {1--10},
     publisher = {Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique},
     year = {2015-2016},
     doi = {10.5802/slsedp.90},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/slsedp.90/}
}
TY  - JOUR
AU  - Jendrej, Jacek
TI  - Construction of two-bubble solutions for some energy-critical wave equations
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:21
PY  - 2015-2016
SP  - 1
EP  - 10
PB  - Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique
UR  - http://www.numdam.org/articles/10.5802/slsedp.90/
DO  - 10.5802/slsedp.90
LA  - en
ID  - SLSEDP_2015-2016____A21_0
ER  - 
%0 Journal Article
%A Jendrej, Jacek
%T Construction of two-bubble solutions for some energy-critical wave equations
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:21
%D 2015-2016
%P 1-10
%I Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique
%U http://www.numdam.org/articles/10.5802/slsedp.90/
%R 10.5802/slsedp.90
%G en
%F SLSEDP_2015-2016____A21_0
Jendrej, Jacek. Construction of two-bubble solutions for some energy-critical wave equations. Séminaire Laurent Schwartz — EDP et applications (2015-2016), Exposé no. 21, 10 p. doi : 10.5802/slsedp.90. http://www.numdam.org/articles/10.5802/slsedp.90/

[1] T. Aubin, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976), no. 9, 269–296.

[2] H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math. 121 (1999), no. 1, 131–175.

[3] P. Bizoń, T. Chmaj, and Z. Tabor, Formation of singularities for equivariant 2+1 dimensional wave maps into the 2-sphere, Nonlinearity 14 (2001), no. 5, 1041–1053.

[4] A. Bulut, M. Czubak, D. Li, N. Pavlović, and X. Zhang, Stability and unconditional uniqueness of solutions for energy critical wave equations in high dimensions, Comm. Part. Diff. Eq. 38 (2013), no. 4, 575–607.

[5] R. Côte, On the soliton resolution for equivariant wave maps to the sphere, Comm. Pure Appl. Math. 68 (2015), no. 11, 1946–2004.

[6] R. Côte, C. E. Kenig, A. Lawrie, and W. Schlag, Characterization of large energy solutions of the equivariant wave map problem: I, Amer. J. Math. 137 (2015), no. 1, 139–207.

[7] R. Côte, C. E. Kenig, and F. Merle, Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system, Comm. Math. Phys. 284 (2008), no. 1, 203–225.

[8] P. Daskalopoulos, M. del Pino, and N. Sesum, Type II ancient compact solutions to the Yamabe flow, J. Reine Angew. Math. (2015), . | DOI

[9] R. Donninger, M. Huang, J. Krieger, and W. Schlag, Exotic blowup solutions for the u 5 focusing wave equation in 3 , Michigan Math. J. 63 (2014), no. 3, 451–501.

[10] R. Donninger and J. Krieger, Nonscattering solutions and blowup at infinity for the critical wave equation, Math. Ann. 357 (2013), no. 1, 89–163.

[11] T. Duyckaerts, J. Jia, C. E. Kenig, and F. Merle, Soliton resolution along a sequence of times for the focusing energy critical wave equation, Preprint, , 2016. | arXiv

[12] T. Duyckaerts, C. E. Kenig, and F. Merle, Classification of the radial solutions of the focusing, energy-critical wave equation, Camb. J. Math. 1 (2013), no. 1, 75–144.

[13] T. Duyckaerts and F. Merle, Dynamics of threshold solutions for energy-critical wave equation, Int. Math. Res. Pap. IMRP (2008).

[14] W. Eckhaus and P. C. Schuur, The emergence of solitons of the Korteweg-de Vries equation from arbitrary initial conditions, Math. Methods Appl. Sci. 5 (1983), 97–116.

[15] J. Ginibre, A. Soffer, and G. Velo, The global Cauchy problem for the critical nonlinear wave equation, J. Funct. Anal. 110 (1992), 96–130.

[16] M. Hillairet and P. Raphaël, Smooth type II blow up solutions to the four dimensional energy critical wave equation, Anal. PDE 5 (2012), no. 4, 777–829.

[17] J. Jendrej, Construction of type II blow-up solutions for the energy-critical wave equation in dimension 5, Preprint,, 2015. | arXiv

[18] —, Nonexistence of radial two-bubbles with opposite signs for the energy-critical wave equation, Preprint , 2015. | arXiv

[19] —, Construction of two-bubble solutions for energy-critical wave equations, Preprint, , 2016. | arXiv

[20] H. Jia and C. E. Kenig, Asymptotic decomposition for semilinear wave and equivariant wave map equations, Preprint, , 2015. | arXiv

[21] K. Jörgens, Das Anfangswertproblem im Großen für eine Klasse nichtlinearer Wellengleichungen, Math. Zeitschr. 77 (1961), 295–308.

[22] J. B. Keller, On solutions of nonlinear wave equations, Comm. Math. Pure Appl. 10 (1957), 523–530.

[23] C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math. 201 (2008), no. 2, 147–212.

[24] J. Krieger and W. Schlag, Full range of blow up exponents for the quintic wave equation in three dimensions, J. Math Pures Appl. 101 (2014), no. 6, 873–900.

[25] J. Krieger, W. Schlag, and D. Tataru, Renormalization and blow up for charge one equivariant critical wave maps, Invent. Math. 171 (2008), no. 3, 543–615.

[26] —, Slow blow-up solutions for the H 1 ( 3 ) critical focusing semilinear wave equation, Duke Math. J. 147 (2009), no. 1, 1–53.

[27] Y. Martel, Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math. 127 (2005), no. 5, 1103–1140.

[28] Y. Martel and F. Merle, On the nonexistence of pure multi-solitons for the quartic gKdV equation, Int. Math. Res. Not. (2013), . | DOI

[29] —, Construction of multi-solitons for the energy-critical wave equation in dimension 5, ARMA (2016), 1–48, . | DOI

[30] Y. Martel, F. Merle, and P. Raphaël, Blow up for the critical gKdV equation III: exotic regimes, Ann. Sc. Norm. Super. Pisa Cl. Sci. XIV (2015), 575–631.

[31] Y. Martel and P. Raphaël, Strongly interacting blow up bubbles for the mass critical NLS, Preprint, , 2015. | arXiv

[32] F. Merle, Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity, Commun. Math. Phys. 129 (1990), no. 2, 223–240.

[33] C. Ortoleva and G. Perelman, Nondispersive vanishing and blow up at infinity for the energy critical nonlinear Schrödinger equation in 3 , Algebra i Analiz 25 (2013), no. 2, 162–192.

[34] L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math. 22 (1975), no. 3, 273–303.

[35] G. Perelman, Blow up dynamics for equivariant critical Schrödinger maps, Commun. Math. Phys. 330 (2014), no. 1, 69–105.

[36] P. Raphaël and J. Szeftel, Existence and uniqueness of minimal mass blow up solutions to an inhomogeneous L 2 -critical NLS, J. Amer. Math. Soc. 24 (2011), no. 2, 471–546.

[37] I. Rodnianski and P. Raphaël, Stable blow up dynamics for critical corotational wave maps and the equivariant Yang Mills problem, Publ. Math. Inst. Hautes Études Sci. 115 (2012), 1–122.

[38] I. Rodnianski and J. Sterbenz, On the formation of singularities in the critical O(3) σ-model, Ann. of Math. 172 (2010), no. 1, 187–242.

[39] J. Shatah and M. Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices 7 (1994), 303–309.

[40] J. Shatah and A. Tahvildar-Zadeh, On the Cauchy problem for equivariant wave maps, Comm. Pure Appl. Math. 47 (1994), no. 5, 719–754.

[41] M. Struwe, Equivariant wave maps in two space dimensions, Comm. Pure Appl. Math. 56 (2003), no. 7, 815–823.

[42] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), no. 4, 353–372.

[43] P. Topping, An example of a nontrivial bubble tree in the harmonic map heat flow, Harmonic Morphisms, Harmonic Maps and Related Topics, Chapman and Hall/CRC, 1999.

[44] —, Repulsion and quantization in almost-harmonic maps, and asymptotics of the harmonic map flow, Ann. of Math. 159 (2004), no. 2, 465–534.

Cité par Sources :