On présente des résultats permettant de mieux comprendre la structure du noyau de collision de Landau original (celui correspondant aux collisions entre particules chargées dans un plasma). À partir d’une estimation de la production d’entropie du noyau, on obtient des résultats pour l’équation de Landau homogène avec potentiel coulombien, qui concernent la régularité et le comportement asymptotique lorsque .
@article{SLSEDP_2014-2015____A14_0, author = {Desvillettes, Laurent}, title = {Structure entropique du noyau de collision de {Landau}}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:14}, pages = {1--9}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2014-2015}, doi = {10.5802/slsedp.81}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/slsedp.81/} }
TY - JOUR AU - Desvillettes, Laurent TI - Structure entropique du noyau de collision de Landau JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:14 PY - 2014-2015 SP - 1 EP - 9 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/articles/10.5802/slsedp.81/ DO - 10.5802/slsedp.81 LA - fr ID - SLSEDP_2014-2015____A14_0 ER -
%0 Journal Article %A Desvillettes, Laurent %T Structure entropique du noyau de collision de Landau %J Séminaire Laurent Schwartz — EDP et applications %Z talk:14 %D 2014-2015 %P 1-9 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/articles/10.5802/slsedp.81/ %R 10.5802/slsedp.81 %G fr %F SLSEDP_2014-2015____A14_0
Desvillettes, Laurent. Structure entropique du noyau de collision de Landau. Séminaire Laurent Schwartz — EDP et applications (2014-2015), Talk no. 14, 9 p. doi : 10.5802/slsedp.81. http://www.numdam.org/articles/10.5802/slsedp.81/
[1] R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg. Entropy dissipation and long-range interactions. Arch. Rat. Mech. Anal., 152, (2000), 327-355. | MR | Zbl
[2] R. Alexandre, J. Liao, and C. Lin. Some a priori estimates for the homogeneous Landau equation with soft potentials. | arXiv | MR
[3] R. Alexandre, and C. Villani. On the Landau approximation in plasma physics. Annales Inst. Henri Poincaré, (C) Analyse non-linéaire, 21 n.1 (2004), 61-95. | Numdam | MR | Zbl
[4] K. Carrapatoso and L. He. Personal Communication.
[5] C. Cercignani. The Boltzmann equation and its applications. Springer, New York, 1988. | MR | Zbl
[6] S. Chapman and T.G. Cowling. The mathematical theory of non–uniform gases. Cambridge Univ. Press, London, 1952. | Zbl
[7] H. Chen, W.-X. Li, C.-J. Xu. Propagation of Gevrey regularity for solutions of Landau equations, Kinetic and Related Models, 1 n.3 (2008), 355–368. | MR | Zbl
[8] H. Chen, W.-X. Li, C.-J. Xu. Analytic smoothness effect of solutions for spatially homogeneous Landau equation, J. Differ. Equations, 248, (2010), 77–94. | MR | Zbl
[9] P. Degond, B. Lucquin-Desreux. The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case. Math. Mod. Meth. Appl. Sci., 2 n.2 (1992), 167–182. | MR | Zbl
[10] L. Desvillettes. Entropy dissipation estimates for the Landau equation in the Coulomb case and applications . | arXiv | MR
[11] L. Desvillettes. On asymptotics of the Boltzmann equation when the collisions become grazing. Transport Theory Statist. Phys., 21, n.3 (1992), 259–276. | MR | Zbl
[12] L. Desvillettes and C. Villani. On the spatially homogeneous Landau equation for hard potentials. Part I. Existence, uniqueness and smoothness. Commun. Partial Differential Equations, 25, n.1-2 (2000), 179-259. | MR | Zbl
[13] L. Desvillettes and C. Villani. On the spatially homogeneous Landau equation for hard potentials. Part II. H-Theorem and applications. Commun. Partial Differential Equations, 25, n.1-2 (2000), 261-298. | MR | Zbl
[14] N. Fournier. Uniqueness of bounded solutions for the homogeneous Landau equation with a Coulomb potential. Commun. Math. Phys., 299, (2010), 765–782. | MR | Zbl
[15] N. Fournier, H. Guérin. Well-posedness of the spatially homogeneous Landau equation for soft potentials. J. Funct. Anal., 25, n.8, (2009), 2542–2560. | MR | Zbl
[16] Y. Guo. The Landau Equation in a Periodic Box. Comm. Math. Phys., 231, n.3, (2002), 391-434. | MR | Zbl
[17] E.M. Lifschitz and L.P. Pitaevskii. Physical kinetics. Pergamon Press., Oxford, 1981.
[18] P.L. Lions. On Boltzmann and Landau equations. Phil. Trans. R. Soc. Lond. A, 346, (1994), 191–204. | MR | Zbl
[19] Y. Morimoto, K. Pravda-Starov and C.-J. Xu. A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equation. Kinet. Relat. Models, 6, n.4 (2013), 715–727. | MR | Zbl
[20] C. Villani. On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Rat. Mech. Anal. 143 n.3, (1998), 273–307. | MR | Zbl
[21] C. Villani. On the spatially homogeneous Landau equation for Maxwellian molecules. Math. Meth. Mod. Appl. Sci. 8 n.6, (1998), 957–983. | MR | Zbl
[22] K.-C. Wu. Global in time estimates for the spatially homogeneous Landau equation with soft potentials. J. Funct. Anal., 266, (2014), 3134-3155. | MR | Zbl
Cited by Sources: