Quantitative hydrodynamic limits of the Langevin dynamics for gradient interface models
Séminaire Laurent Schwartz — EDP et applications (2021-2022), Exposé no. 5, 15 p.

We review some recent, quantitative, progress regarding the large-scale behavior of the ϕ (or Ginzburg-Landau) interface model with uniformly convex potential. The arguments rely on a dynamical approach of the problem (following [32] where the Langevin dynamics associated with the model are studied) combined with recent progress in the field of quantitative stochastic homogenization of nonlinear elliptic equations.

Publié le :
DOI : 10.5802/slsedp.146
Dario, Paul 1

1 Institut Camille Jordan, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne cedex
@article{SLSEDP_2021-2022____A1_0,
     author = {Dario, Paul},
     title = {Quantitative hydrodynamic limits of the {Langevin} dynamics for gradient interface models},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:5},
     pages = {1--15},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2021-2022},
     doi = {10.5802/slsedp.146},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/slsedp.146/}
}
TY  - JOUR
AU  - Dario, Paul
TI  - Quantitative hydrodynamic limits of the Langevin dynamics for gradient interface models
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:5
PY  - 2021-2022
SP  - 1
EP  - 15
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/articles/10.5802/slsedp.146/
DO  - 10.5802/slsedp.146
LA  - en
ID  - SLSEDP_2021-2022____A1_0
ER  - 
%0 Journal Article
%A Dario, Paul
%T Quantitative hydrodynamic limits of the Langevin dynamics for gradient interface models
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:5
%D 2021-2022
%P 1-15
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://www.numdam.org/articles/10.5802/slsedp.146/
%R 10.5802/slsedp.146
%G en
%F SLSEDP_2021-2022____A1_0
Dario, Paul. Quantitative hydrodynamic limits of the Langevin dynamics for gradient interface models. Séminaire Laurent Schwartz — EDP et applications (2021-2022), Exposé no. 5, 15 p. doi : 10.5802/slsedp.146. http://www.numdam.org/articles/10.5802/slsedp.146/

[1] S. Adams, R. Kotecký, and S. Müller. Strict convexity of the surface tension for non-convex potentials. 2016. | arXiv

[2] S. Armstrong and P. Dario. Quantitative hydrodynamic limits of the langevin dynamics for gradient interface models. 2022. | arXiv

[3] S. Armstrong, S. J. Ferguson, and T. Kuusi. Higher-order linearization and regularity in nonlinear homogenization. Arch. Ration. Mech. Anal., 237(2):631–741, 2020. | DOI | MR | Zbl

[4] S. Armstrong, S. J. Ferguson, and T. Kuusi. Homogenization, linearization, and large-scale regularity for nonlinear elliptic equations. Comm. Pure Appl. Math., 74(2):286–365, 2021. | DOI | Zbl

[5] S. Armstrong, T. Kuusi, and J.-C. Mourrat. Mesoscopic higher regularity and subadditivity in elliptic homogenization. Comm. Math. Phys., 347(2):315–361, 2016. | DOI | MR | Zbl

[6] S. Armstrong, T. Kuusi, and J.-C. Mourrat. The additive structure of elliptic homogenization. Invent. Math., 208(3):999–1154, 2017. | DOI | MR | Zbl

[7] S. Armstrong, T. Kuusi, and J.-C. Mourrat. Quantitative stochastic homogenization and large-scale regularity, volume 352 of Grundlehren der Mathematischen Wissenschaften. Springer-Nature, 2019. | DOI | Zbl

[8] S. Armstrong and C. Smart. Quantitative stochastic homogenization of convex integral functionals. Ann. Sci. Éc. Norm. Supér. (4), 49(2):423–481, 2016. | DOI | Zbl

[9] D. G. Aronson. Bounds for the fundamental solution of a parabolic equation. Bull. Amer. Math. Soc., 73:890–896, 1967. | DOI | MR | Zbl

[10] M. Avellaneda and F.-H. Lin. Compactness methods in the theory of homogenization. Comm. Pure Appl. Math., 40(6):803–847, 1987. | DOI | MR | Zbl

[11] M. Avellaneda and F.-H. Lin. L p bounds on singular integrals in homogenization. Comm. Pure Appl. Math., 44(8-9):897–910, 1991. | DOI | Zbl

[12] M. Biskup and R. Kotecký. Phase coexistence of gradient Gibbs states. Probab. Theory Related Fields, 139(1-2):1–39, 2007. | DOI | MR | Zbl

[13] M. Biskup and H. Spohn. Scaling limit for a class of gradient fields with nonconvex potentials. Ann. Probab., 39(1):224–251, 2011. | DOI | MR | Zbl

[14] C. Borell. The Brunn-Minkowski inequality in Gauss space. Invent. Math., 30(2):207–216, 1975. | DOI | MR | Zbl

[15] S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities: A nonasymptotic theory of independence. Oxford university press, 2013. | DOI | Zbl

[16] H. Brascamp and E. Lieb. Some inequalities for Gaussian measures and the long-range order of one-dimensional plasma, functional integration and its applications, ed. by A.M. Arthurs, 1975. | Zbl

[17] H. Brascamp and E. Lieb. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Functional Analysis, 22(4):366–389, 1976. | DOI | Zbl

[18] H. J. Brascamp, E. H. Lieb, and J. L. Lebowitz. The statistical mechanics of anharmonic lattices. Bull. Inst. Internat. Statist., 46(1):393–404 (1976), 1975.

[19] D. Brydges and H.-T. Yau. Grad ϕ perturbations of massless Gaussian fields. Comm. Math. Phys., 129(2):351–392, 1990. | DOI | MR | Zbl

[20] P. Cardaliaguet, N. Dirr, and P. E. Souganidis. Scaling limits and stochastic homogenization for some nonlinear parabolic equations. J. Differential Equations, 307:389–443, 2022. | DOI | MR | Zbl

[21] N. Clozeau and A. Gloria. Quantitative nonlinear homogenization: control of oscillations. 2021. | arXiv

[22] C. Cotar and J.-D. Deuschel. Decay of covariances, uniqueness of ergodic component and scaling limit for a class of ϕ systems with non-convex potential. Ann. Inst. Henri Poincaré Probab. Stat., 48(3):819–853, 2012. | DOI | MR | Zbl

[23] C. Cotar, J.-D. Deuschel, and S. Müller. Strict convexity of the free energy for a class of non-convex gradient models. Comm. Math. Phys., 286(1):359–376, 2009. | DOI | MR | Zbl

[24] G. Dal Maso and L. Modica. Nonlinear stochastic homogenization. Ann. Mat. Pura Appl. (4), 144:347–389, 1986. | DOI | MR | Zbl

[25] G. Dal Maso and L. Modica. Nonlinear stochastic homogenization and ergodic theory. J. Reine Angew. Math., 368:28–42, 1986. | DOI | MR | Zbl

[26] T. Delmotte and J.-D. Deuschel. On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to ϕ interface model. Probab. Theory Related Fields, 133(3):358–390, 2005. | DOI | MR | Zbl

[27] J.-D. Deuschel, G. Giacomin, and D. Ioffe. Large deviations and concentration properties for ϕ interface models. Probab. Theory Related Fields, 117(1):49–111, 2000. | DOI | MR | Zbl

[28] J.-D. Deuschel, T. Nishikawa, and Y. Vignaud. Hydrodynamic limit for the Ginzburg-Landau ϕ interface model with non-convex potential. Stochastic Process. Appl., 129(3):924–953, 2019. | DOI | Zbl

[29] J. Fischer and S. Neukamm. Optimal homogenization rates in stochastic homogenization of nonlinear uniformly elliptic equations and systems. Arch. Ration. Mech. Anal., 242(1):343–452, 2021. | DOI | MR | Zbl

[30] J.-R. Fontaine. Non-perturbative methods for the study of massless models. In Scaling and Self-Similarity in Physics, pages 203–226. Springer, 1983. | DOI

[31] T. Funaki. Stochastic interface models. In Lectures on Probability Theory and Statistics, volume 1869 of Lecture Notes in Math., pages 103–274. Springer, Berlin, 2005. | DOI

[32] T. Funaki and H. Spohn. Motion by mean curvature from the Ginzburg-Landau ϕ interface model. Comm. Math. Phys., 185(1):1–36, 1997. | DOI | MR

[33] G. Giacomin, S. Olla, and H. Spohn. Equilibrium fluctuations for ϕ interface model. Ann. Probab., 29(3):1138–1172, 2001. | DOI | MR

[34] A. Gloria, S. Neukamm, and F. Otto. Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics. Invent. Math., 199(2):455–515, 2015. | DOI | MR

[35] A. Gloria, S. Neukamm, and F. Otto. A regularity theory for random elliptic operators. Milan J. Math., 88(1):99–170, 2020. | DOI | MR

[36] A. Gloria and F. Otto. An optimal variance estimate in stochastic homogenization of discrete elliptic equations. Ann. Probab., 39(3):779–856, 2011. | DOI | MR

[37] A. Gloria and F. Otto. An optimal error estimate in stochastic homogenization of discrete elliptic equations. Ann. Appl. Probab., 22(1):1–28, 2012. | DOI | MR

[38] A. Gloria and F. Otto. The corrector in stochastic homogenization: optimal rates, stochastic integrability, and fluctuations. 2015. | arXiv

[39] A. Gloria and F. Otto. Quantitative results on the corrector equation in stochastic homogenization. J. Eur. Math. Soc. (JEMS), 19(11):3489–3548, 2017. | DOI | MR

[40] M. Z. Guo, G. C. Papanicolaou, and S. R. S. Varadhan. Nonlinear diffusion limit for a system with nearest neighbor interactions. Comm. Math. Phys., 118(1):31–59, 1988. | DOI | MR

[41] V. V. Jikov, S. M. Kozlov, and O. A. Oleĭnik. Homogenization of differential operators and integral functionals. Springer-Verlag, Berlin, 1994. Translated from the Russian by G. A. Yosifian [G. A. Iosifʼyan]. | DOI

[42] S. M. Kozlov. Averaging of differential operators with almost periodic rapidly oscillating coefficients. Mat. Sb. (N.S.), 107(149)(2):199–217, 317, 1978.

[43] J. Miller. Fluctuations for the Ginzburg-Landau ϕ interface model on a bounded domain. Comm. Math. Phys., 308(3):591–639, 2011. | DOI | MR

[44] A. Naddaf and T. Spencer. On homogenization and scaling limit of some gradient perturbations of a massless free field. Comm. Math. Phys., 183(1):55–84, 1997. | DOI | MR

[45] T. Nishikawa. Hydrodynamic limit for the Ginzburg-Landau ϕ interface model with boundary conditions. Probab. Theory Related Fields, 127(2):205–227, 2003. | DOI | MR

[46] G. C. Papanicolaou and S. R. S. Varadhan. Boundary value problems with rapidly oscillating random coefficients. In Random fields, Vol. I, II (Esztergom, 1979), volume 27 of Colloq. Math. Soc. János Bolyai, pages 835–873. North-Holland, Amsterdam, 1981.

[47] S. Sheffield. Random surfaces. Astérisque, (304):vi+175, 2005.

[48] V. N. Sudakov and B. S. Tsirel’son. Extremal properties of half-spaces for spherically invariant measures. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 41:14–24, 165, 1974. Problems in the theory of probability distributions, II.

[49] Y. Velenik. Localization and delocalization of random interfaces. Probab. Surv., 3:112–169, 2006. | DOI | MR

[50] V. V. Yurinskiĭ. Averaging of symmetric diffusion in a random medium. Sibirsk. Mat. Zh., 27(4):167–180, 215, 1986. | MR

Cité par Sources :