A nonlinear Fourier transform for the Benjamin–Ono equation on the torus and applications
Séminaire Laurent Schwartz — EDP et applications (2019-2020), Exposé no. 8, 19 p.

The Benjamin-Ono equation was introduced by Benjamin in 1967 as a model for a special regime of internal gravity waves at the interface of two fluids. This nonlinear dispersive equation admits a Lax pair structure involving nonlocal operators of Toeplitz type on the Hardy space. In the case of periodic boundary conditions, the spectral study of these Lax operators allows us to construct a nonlinear Fourier transform which conjugates the Benjamin–Ono dynamics to advection with constant velocity on tori. This construction has several applications: low regularity well-posedness of the initial value problem, long time behaviour of solutions and stability of traveling waves. This is a short report on these results, recently obtained in collaboration with T. Kappeler and P. Topalov.

Publié le :
DOI : 10.5802/slsedp.138
Gérard, Patrick 1

1 Laboratoire de Mathématiques d’Orsay, CNRS, Université Paris-Saclay 91405 Orsay Cedex France
@article{SLSEDP_2019-2020____A5_0,
     author = {G\'erard, Patrick},
     title = {A nonlinear {Fourier} transform for {the~Benjamin{\textendash}Ono} equation on the torus and applications},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:8},
     pages = {1--19},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2019-2020},
     doi = {10.5802/slsedp.138},
     zbl = {07436150},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/slsedp.138/}
}
TY  - JOUR
AU  - Gérard, Patrick
TI  - A nonlinear Fourier transform for the Benjamin–Ono equation on the torus and applications
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:8
PY  - 2019-2020
SP  - 1
EP  - 19
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/articles/10.5802/slsedp.138/
DO  - 10.5802/slsedp.138
LA  - en
ID  - SLSEDP_2019-2020____A5_0
ER  - 
%0 Journal Article
%A Gérard, Patrick
%T A nonlinear Fourier transform for the Benjamin–Ono equation on the torus and applications
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:8
%D 2019-2020
%P 1-19
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://www.numdam.org/articles/10.5802/slsedp.138/
%R 10.5802/slsedp.138
%G en
%F SLSEDP_2019-2020____A5_0
Gérard, Patrick. A nonlinear Fourier transform for the Benjamin–Ono equation on the torus and applications. Séminaire Laurent Schwartz — EDP et applications (2019-2020), Exposé no. 8, 19 p. doi : 10.5802/slsedp.138. http://www.numdam.org/articles/10.5802/slsedp.138/

[1] L. Abdelouhab, J. Bona, M. Felland, J.-C. Saut, Non local models for nonlinear dispersive waves, Physica D, Nonlinear Phenomena, 40 (1989), 360–392 | DOI | MR | Zbl

[2] C. Amick, J. Toland, Uniqueness and related analytic properties for the Benjamin-Ono equation – a nonlinear Neumann problem in the plane, Acta Math., 167 (1991), 107–126 | DOI | MR | Zbl

[3] J. Angulo Pava, F. Natali, Positivity properties of the Fourier transform and the stability of periodic travelling-wave solutions, SIAM J. Math. Anal. 40 (2008), no. 3, 1123–1151 | DOI | MR | Zbl

[4] J. Angulo Pava, S. Hakkaev, Illposedness for periodic nonlinear dispersive equations, Elec. J. Differential Equations, vol. 2010 (2010), no. 119, 1-19 | Zbl

[5] T. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), 559–592 | DOI | Zbl

[6] H. Bahouri, J.-Y. Chemin, R. Danchin Fourier analysis and nonlinear partial differential equations, Grundlehren der math. Wissenschaften, vol. 343, Springer, 2011 | DOI

[7] T. Bock, M. Kruskal, A two-parameter Miura transformation of the Benjamin-Ono equation, Phys. Lett. A, 74 (1979), 173–176 | DOI | MR

[8] R. Coifman, M. Wickerhauser, The scattering transform for the Benjamin-Ono equation, Inverse Problems 6 (1990), 825–861 | DOI | MR | Zbl

[9] Y. Deng, Invariance of the Gibbs measure for the Benjamin-Ono equation, J. Eur. Math. Soc., 17 (2015), 1107–1198 | DOI | MR | Zbl

[10] A. Fokas, M. Ablowitz, Inverse scattering transform for the Benjamin-Ono equation: A pivot to multidimensional problems, Stud. Appl. Math. 68 (1983), 1–10 | DOI | MR | Zbl

[11] L. Gassot, The third order Benjamin–Ono equation on the torus: well–posedness, traveling waves and stability, | arXiv

[12] L. Gassot, On a damped Benjamin–Ono equation, in preparation.

[13] P. Gérard, T. Kappeler, On the integrability of the Benjamin–Ono equation on the torus, , to appear in Comm. Pure and Appl. Math., | arXiv | DOI

[14] P. Gérard, T. Kappeler, P. Topalov, Sharp wellposedness of the Benjamin–Ono equation in H s (𝕋,) and qualitative properties of its solution, | arXiv

[15] P. Gérard, T. Kappeler, P. Topalov, On the spectrum of the Lax operator of the Benjamin–Ono equation on the torus, | arXiv

[16] B. Isom, D. Mantzavinos, S. Oh, A. Stefanov, Polynomial bound and nonlinear smoothing for the Benjamin-Ono equation on the circle, | arXiv

[17] R. Killip, M. Visan, X. Zhang, Low regularity conservation laws for integrable PDE, Geom. Funct. Anal. 28 (2018), no. 4, 1062–1090 | DOI | MR | Zbl

[18] B. Levitan, V. Zhikov, Almost periodic functions and differential equations, Cambridge University Press, 1982 | Zbl

[19] L. Molinet, Global well-posedness in L 2 for the periodic Benjamin-Ono equation, American J. Math.130 (3) (2008), 2793–2798 | Zbl

[20] L. Molinet, D. Pilod, The Cauchy problem for the Benjamin-Ono equation in L 2 revisited, Anal. and PDE 5 (2012), no. 2, 365–395 | DOI | Zbl

[21] A. Moll, Exact Bohr–Sommerfeld conditions for the quantum Benjamin–Ono periodic equation, , to appear in SIGMA 15 (2019), | arXiv | DOI | Zbl

[22] A. Nakamura, Backlund transform and conservation laws of the Benjamin-Ono equation, J. Phys. Soc. Japan 47 (1979), 1335–1340 | DOI | Zbl

[23] H. Ono, Algebraic solitary waves in stratified fluids, J. Physical Soc. Japan 39 (1975), 1082–1091 | DOI | MR | Zbl

[24] J.-C. Saut, Sur quelques généralisations de l’équation de Korteweg-de Vries, J. Math. Pures Appl. 58 (1979), 21–61 | Zbl

[25] J.-C. Saut, Benjamin-Ono and Intermediate Long Wave equations: modeling, IST, and PDE, in Fields Institute Communications 83, Miller, Perry, Saut, Sulem eds, Springer, 2019 | DOI

[26] R. Sun, Complete integrability of the Benjamin–Ono equation on the multi–soliton manifolds, | arXiv

[27] B. Talbut, Low regularity conservation laws for the Benjamin-Ono equation, , to appear in Math. Research Letters | arXiv

[28] T. Tao, Global well-posedness of the Benjamin-Ono equation, J. Hyperbolic Diff. Equ. 1 (2004), 27–49 | DOI | Zbl

[29] N. Tzvetkov, N. Visciglia, Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation, Ann. Sci. Éc. Norm. Supér. 46 (2013), 249–299 | DOI | MR | Zbl

[30] N. Tzvetkov, N. Visciglia, Invariant measures and long-time behavior for the Benjamin-Ono equation, Int. Math. Res. Not. IMRN 2014, 4679–4714 | DOI | MR | Zbl

[31] N. Tzvetkov, N. Visciglia, Invariant measures and long time behaviour for the Benjamin-Ono equation II, J. Math. Pures Appl. (9) 103 (2015), 102–141 | DOI | MR | Zbl

[32] N. Tzvetkov, N. Visciglia, Y. Deng, Invariant measures and long time behaviour for the Benjamin-Ono equation III, Comm. Math. Phys. 339 (2015), 815–857 | DOI | MR | Zbl

[33] Y. Wu, Simplicity and finiteness of discrete spectrum of the Benjamin–Ono scattering operator, SIAM J. Math. Anal. 48 (2016), 1348–1367 | DOI | MR | Zbl

[34] Y. Wu, Jost solutions and the direct scattering problem of the Benjamin–Ono equation, SIAM J. Math. Anal. 49 (2017), no. 6, 5158–5206. | DOI | MR | Zbl

Cité par Sources :