Modulated free energy and mean field limit
Séminaire Laurent Schwartz — EDP et applications (2019-2020), Exposé no. 2, 22 p.

This is the document corresponding to the talk the first author gave at IHÉS for the Laurent Schwartz seminar on November 19, 2019. It concerns our recent introduction of a modulated free energy in mean-field theory in [4]. This physical object may be seen as a combination of the modulated potential energy introduced by S. Serfaty [See Proc. Int. Cong. Math. (2018)] and of the relative entropy introduced in mean field limit theory by P.–E. Jabin, Z. Wang [See Inventiones 2018]. It allows to obtain, for the first time, a convergence rate in the mean field limit for Riesz and Coulomb repulsive kernels in the presence of viscosity using the estimates in [8] and [20]. The main objective in this paper is to explain how it is possible to cover more general repulsive kernels through a Fourier transform approach as announced in [4] first in the case σ N 0 when N+ and then if σ>0 is fixed. Then we end the paper with comments on the particle approximation of the Patlak-Keller-Segel system which is associated to an attractive kernel and refer to [C.R. Acad Science Paris 357, Issue 9, (2019), 708–720] by the authors for more details.

Publié le :
DOI : 10.5802/slsedp.135
Bresch, Didier 1 ; Jabin, Pierre-Emmanuel 2 ; Wang, Zhenfu 3

1 LAMA CNRS UMR5127, Univ. Savoie Mont-Blanc 73376 Le Bourget du Lac, France
2 CSCAMM and departement of Mathematics, Univ. of Maryland College Park, MD, USA
3 Department of Mathematics, Univ. of Pennsylvania, Philadelphia PA, USA
@article{SLSEDP_2019-2020____A1_0,
     author = {Bresch, Didier and Jabin, Pierre-Emmanuel and Wang, Zhenfu},
     title = {Modulated free energy and mean~field~limit},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:2},
     pages = {1--22},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2019-2020},
     doi = {10.5802/slsedp.135},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/slsedp.135/}
}
TY  - JOUR
AU  - Bresch, Didier
AU  - Jabin, Pierre-Emmanuel
AU  - Wang, Zhenfu
TI  - Modulated free energy and mean field limit
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:2
PY  - 2019-2020
SP  - 1
EP  - 22
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/articles/10.5802/slsedp.135/
DO  - 10.5802/slsedp.135
LA  - en
ID  - SLSEDP_2019-2020____A1_0
ER  - 
%0 Journal Article
%A Bresch, Didier
%A Jabin, Pierre-Emmanuel
%A Wang, Zhenfu
%T Modulated free energy and mean field limit
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:2
%D 2019-2020
%P 1-22
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://www.numdam.org/articles/10.5802/slsedp.135/
%R 10.5802/slsedp.135
%G en
%F SLSEDP_2019-2020____A1_0
Bresch, Didier; Jabin, Pierre-Emmanuel; Wang, Zhenfu. Modulated free energy and mean field limit. Séminaire Laurent Schwartz — EDP et applications (2019-2020), Exposé no. 2, 22 p. doi : 10.5802/slsedp.135. http://www.numdam.org/articles/10.5802/slsedp.135/

[1] D. Arsenio, L. Saint–Raymond. From the Vlasov Maxwell Boltzmann System to Incompressible Viscous Electro–magneto–hydrodynamics. EMS Monographs in Mathematics (2019). | DOI | Zbl

[2] A. Blanchet, J. Dolbeault, B. Perthame. Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions. Electronic Journal of Differential Equations [EJDE)[electronic only] (2006). | DOI | Zbl

[3] D. Bresch, P.–E. Jabin. Global existence of weak solutions for compressible Navier-Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor. Annals. of Math, 577–684, volume 188, (2018). | DOI | MR | Zbl

[4] D. Bresch, P.–E. Jabin, Z. Wang. On mean-field limits and quantitative estimates with a large class of singular kernels: Application to the Patlak-Keller-Segel model. C.R. Acad. Sciences Mathématiques, 357, Issue 9, (2019), 708–720. | DOI | MR | Zbl

[5] D. Bresch, P.–E. Jabin, Z. Wang. Mean field limit and quantitative estimates with a large class of singular kernels. In preparation (2019).

[6] P. Cattiaux, L. Pédèches. The 2-D stochastic Keller-Segel particle model: existence and uniqueness. ALEA Lat. Am. J. Probab Stat, 13 (1) (2016, 447–463. | DOI | MR | Zbl

[7] J. Dolbeault, B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in R 2 . C. R. Math. Acad. Sci. Paris 339, no. 9, 611–616, (2004). | DOI | MR | Zbl

[8] M. Duerinckx. Mean Field Limit for some Riesz interaction gradient flows. SIAM J. Math. Anal, 48, 3, (2016), 2269–2300. | DOI | MR | Zbl

[9] N. Fournier, B. Jourdain. Stochastic particle approximation of the Keller-Segel equation and two dimensional generalization of Bessel processes. Ann. Appl. Proba, 5 (2017), 2807–2861. | DOI | MR | Zbl

[10] D. Godinho, C. Quiñinao. Propagation of chaos for a sub-critical Keller-Segel Model. Ann. Inst. H. Poincaré Probab. Statist. 51, 965–992 (2015). | DOI | MR | Zbl

[11] F. Golse. On the dynamics of large particle systems in the mean field limit. In: Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity. Volume 3 of the series Lecture Notes in Applied Mathematics and Mechanics, pp. 1–144. Springer, (2016) | DOI

[12] D. Han-Kwan. Quasineutral limit of the Vlasov-Poisson system with massless electrons. Comm. Partial Diff. Eqs. 1385–1425, (2010). | DOI | MR | Zbl

[13] J. Haskovec, C. Schmeiser. Convergence of a stochastic particle approximation for measure solutions of the 2D Keller-Segel system. Comm. Partial Differential Equations 36, 940–960 (2011). | DOI | MR | Zbl

[14] P.–.E. Jabin. A review for the mean field limit for Vlasov equations. Kinet. Relat. Models 7, 661–711 (2014). | DOI | MR | Zbl

[15] P.–E. Jabin, Z. Wang. Quantitative estimates of propagation of chaos for Stochastic systems with W -1, kernels. Inventiones, 214 (1), (2018), 523–591. | DOI | MR | Zbl

[16] P.–E. Jabin, Z. Wang. Mean field limit for stochastic particle systems. Volume 1: Theory, Models, Applications, Birkhauser-Springer (Boston), series Modelling and Simulation in Science Engineering and Technology (2017). | DOI

[17] M. Puel, L. Saint-Raymond. Quasineutral limit for the relativistic Vlasov–Maxwell system Asymptotic Analysis, vol. 40, no. 3,4, pp. 303–352, (2004). | DOI | MR | Zbl

[18] L. Saint-Raymond. Des points vortex aux équations de Navier-Stokes (d’après P.–E. Jabin et Z. Wang). In Séminaire Bourbaki, 70ème année, 2017–2018.

[19] S. Serfaty. Systems of points with Coulomb interactions, in Proc. Int. Cong. of Math. Rio de Janeiro, vol. 1, 2018, 935–978. | Zbl

[20] S. Serfaty. Mean Field limit for Coulomb-type flows. Submitted for publication (2018). | Zbl

[21] M. Tomasevic. On a probabilistic interpretation of the Keller-Segel parabolic-parabolic equations. PhD Thesis, Université Côte d’Azur, (2018).

Cité par Sources :