On the Laughlin function and its perturbations
Séminaire Laurent Schwartz — EDP et applications (2018-2019), Exposé no. 2, 17 p.

The Laughlin state is an ansatz for the ground state of a system of 2D quantum particles submitted to a strong magnetic field and strong interactions. The two effects conspire to generate strong and very specific correlations between the particles.

I present a mathematical approach to the rigidity these correlations display in their response to perturbations. This is an important ingredient in the theory of the fractional quantum Hall effect. The main message is that potentials generated by impurities and residual interactions can be taken into account by generating uncorrelated quasi-holes on top of Laughlin’s wave-function.

An appendix contains a conjecture (not due to me) that should be regarded as a major open mathematical problem of the field, relating to the spectral gap of a certain zero-range interaction.

Expository text based on joint works with Elliott H. Lieb, Alessandro Olgiati, Sylvia Serfaty and Jakob Yngvason.

Publié le :
DOI : 10.5802/slsedp.131
Rougerie, Nicolas 1

1 Université Grenoble Alpes & CNRS LPMMC (UMR 5493) B.P. 166 F-38042 Grenoble France
@article{SLSEDP_2018-2019____A2_0,
     author = {Rougerie, Nicolas},
     title = {On the {Laughlin} function and its perturbations},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:2},
     pages = {1--17},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2018-2019},
     doi = {10.5802/slsedp.131},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/slsedp.131/}
}
TY  - JOUR
AU  - Rougerie, Nicolas
TI  - On the Laughlin function and its perturbations
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:2
PY  - 2018-2019
SP  - 1
EP  - 17
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/articles/10.5802/slsedp.131/
DO  - 10.5802/slsedp.131
LA  - en
ID  - SLSEDP_2018-2019____A2_0
ER  - 
%0 Journal Article
%A Rougerie, Nicolas
%T On the Laughlin function and its perturbations
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:2
%D 2018-2019
%P 1-17
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://www.numdam.org/articles/10.5802/slsedp.131/
%R 10.5802/slsedp.131
%G en
%F SLSEDP_2018-2019____A2_0
Rougerie, Nicolas. On the Laughlin function and its perturbations. Séminaire Laurent Schwartz — EDP et applications (2018-2019), Exposé no. 2, 17 p. doi : 10.5802/slsedp.131. http://www.numdam.org/articles/10.5802/slsedp.131/

[1] Anderson, G. W., Guionnet, A., and Zeitouni, O. An introduction to random matrices, vol. 118 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010. | Zbl

[2] Arovas, S., Schrieffer, J., and Wilczek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 7 (1984), 722–723. | DOI

[3] Bauerschmidt, R., Bourgade, P., Nikula, M., and Yau, H.-T. The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem. 2016. | arXiv | DOI

[4] Bauerschmidt, R., Bourgade, P., Nikula, M., and Yau, H.-T. Local density for two-dimensional one-component plasma. Communications in Mathematical Physics 356, 1 (2017), 189–230. | DOI | MR | Zbl

[5] Bertsch, G., and Papenbrock, T. Yrast line for weakly interacting trapped bosons. Phys. Rev. Lett. 83 (1999), 5412–5414. | DOI

[6] Burchard, A., Choksi, R., and Topaloglu, I. Nonlocal shape optimization via interactions of attractive and repulsive potentials. Indiana Univ. J. Math. (2017). | DOI | MR | Zbl

[7] Chen, Y., and Biswas, R. R. Gauge-invariant variables reveal the quantum geometry of fractional quantum Hall states. 2018. | arXiv

[8] de Picciotto, R., Reznikov, M., Heiblum, M., Umansky, V., Bunin, G., and Mahalu, D. Direct observation of a fractional charge. Nature 389 (1997), 162–164. | DOI

[9] Forrester, P. J. Log-gases and random matrices, vol. 34 of London Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ, 2010. | DOI | Zbl

[10] Frank, R. L., and Lieb, E. H. A liquid-solid phase transition in a simple model for swarming. Indiana Univ. J. Math. (2017). | DOI | MR

[11] Girvin, S. Introduction to the fractional quantum Hall effect. Séminaire Poincaré 2 (2004), 54–74. | DOI

[12] Girvin, S., and Jach, T. Formalism for the quantum Hall effect: Hilbert space of analytic functions. Phys. Rev. B 29, 10 (1984), 5617–5625. | DOI | MR

[13] Goerbig, M. O. Quantum Hall effects. 2009. | arXiv | DOI | Zbl

[14] Haldane, F. D. M. Fractional quantization of the Hall effect: A hierarchy of incompressible quantum fluid states. Phys. Rev. Lett. 51 (Aug 1983), 605–608. | DOI | MR

[15] Haldane, F. D. M. Geometrical description of the fractional quantum Hall effect. Phys. Rev. Lett. 107 (2011), 116801. | DOI

[16] Haldane, F. D. M. The origin of holomorphic states in Landau levels from non-commutative geometry, and a new formula for their overlaps on the torus. J. Math. Phys. 59 (2018), 081901. | DOI | MR | Zbl

[17] Jain, J. K. Composite fermions. Cambridge University Press, 2007. | DOI | Zbl

[18] Johri, S., Papic, Z., Schmitteckert, P., Bhatt, R. N., and Haldane, F. D. M. Probing the geometry of the Laughlin state. New Journal of Physics 18, 2 (feb 2016), 025011. | DOI

[19] Laughlin, R. B. Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 18 (May 1983), 1395–1398. | DOI

[20] Laughlin, R. B. Elementary theory: the incompressible quantum fluid. In The quantum Hall effect, R. E. Prange and S. E. Girvin, Eds. Springer, Heidelberg, 1987. | DOI

[21] Laughlin, R. B. Nobel lecture: Fractional quantization. Rev. Mod. Phys. 71 (Jul 1999), 863–874. | DOI | MR | Zbl

[22] Leblé, T. Local microscopic behavior for 2D Coulomb gases. Probability Theory and Related Fields 169, 3-4 (2017), 931–976. | DOI | MR | Zbl

[23] Leblé, T., and Serfaty, S. Fluctuations of two-dimensional Coulomb gases. 2016. | arXiv | DOI | MR | Zbl

[24] Lewin, M., and Seiringer, R. Strongly correlated phases in rapidly rotating Bose gases. J. Stat. Phys. 137, 5-6 (Dec 2009), 1040–1062. | DOI | MR | Zbl

[25] Lieb, E. H., and Loss, M. Analysis, 2nd ed., vol. 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. | DOI

[26] Lieb, E. H., Rougerie, N., and Yngvason, J. Rigidity of the Laughlin liquid. Journal of Statistical Physics 172, 2 (2018), 544–554. | DOI | MR | Zbl

[27] Lieb, E. H., Rougerie, N., and Yngvason, J. Local incompressibility estimates for the Laughlin phase. Communications in Mathematical Physics 365, 2 (2019), 431–470. | DOI | MR | Zbl

[28] Lieb, E. H., Seiringer, R., and Yngvason, J. Yrast line of a rapidly rotating Bose gas: Gross-Pitaevskii regime. Phys. Rev. A 79 (2009), 063626. | DOI

[29] Lundholm, D., and Rougerie, N. Emergence of fractional statistics for tracer particles in a Laughlin liquid. Phys. Rev. Lett. 116 (2016), 170401. | DOI

[30] Martin, J., Ilani, S., Verdene, B., Smet, J., Umansky, V., Mahalu, D., Schuh, D., Abstreiter, G., and Yacoby, A. Localization of fractionally charged quasi-particles. Science 305 (2004), 980–983. | DOI

[31] Mehta, M. Random matrices. Third edition. Elsevier/Academic Press, 2004. | DOI | Zbl

[32] Olgiati, A., and Rougerie. Stability of the Laughlin phase against long-range interactions. 2019. | arXiv

[33] Papenbrock, T., and Bertsch, G. F. Rotational spectra of weakly interacting Bose-Einstein condensates. Phys. Rev. A 63, 2 (2001), 023616. | DOI

[34] Rougerie, N. Estimations d’incompressibilité pour la phase de Laughlin. Lettre de l’INSMI, 2015.

[35] Rougerie, N. Some contributions to many-body quantum mathematics. 2016. habilitation thesis. | arXiv

[36] Rougerie, N., Serfaty, S., and Yngvason, J. Quantum Hall states of bosons in rotating anharmonic traps. Phys. Rev. A 87 (Feb 2013), 023618. | DOI

[37] Rougerie, N., Serfaty, S., and Yngvason, J. Quantum Hall phases and plasma analogy in rotating trapped Bose gases. J. Stat. Phys. 154 (2014), 2–50. | DOI | MR | Zbl

[38] Rougerie, N., and Yngvason, J. Incompressibility estimates for the Laughlin phase. Comm. Math. Phys. 336 (2015), 1109–1140. | DOI | MR | Zbl

[39] Rougerie, N., and Yngvason, J. Incompressibility estimates for the Laughlin phase, part II. Comm. Math. Phys. 339 (2015), 263–277. | DOI | MR | Zbl

[40] Rougerie, N., and Yngvason, J. The Laughlin liquid in an external potential. Letters in Mathematical Physics 108, 4 (2018), 1007–1029. | DOI | MR | Zbl

[41] Saminadayar, L., Glattli, D. C., Jin, Y., and Etienne, B. Observation of the e/3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79 (Sep 1997), 2526–2529. | DOI

[42] Serfaty, S. Coulomb Gases and Ginzburg-Landau Vortices. Zurich Lectures in Advanced Mathematics. Euro. Math. Soc., 2015. | DOI

[43] Störmer, H., Tsui, D., and Gossard, A. The fractional quantum Hall effect. Rev. Mod. Phys. 71 (1999), S298–S305. | DOI

[44] Viefers, S. Quantum Hall physics in rotating Bose-Einstein condensates. J. Phys. C 20 (2008), 123202. | DOI

[45] Yang, K., Haldane, F. D. M., and Rezayi, E. H. Wigner crystals in the lowest Landau level at low-filling factors. Phys. Rev. B. 64 (2001), 081301(R). | DOI

Cité par Sources :