How to identify the physiological parameters and run the optimal race
MathematicS In Action, Tome 7 (2016) no. 1, pp. 1-10.

This paper shows how a system of ordinary differential equations describing the evolution of the anaerobic energy, the oxygen uptake, the propulsive force and the velocity of a runner accurately describes pacing strategy. We find a protocol to identify the physiological parameters needed in the model using numerical simulations and time splits measurements for an 80 m and a 1600 m race. The velocity curve of the simulations is very close to the experimental one. This model could allow to study the influence of training and improving some specific parameters for the pacing strategy.

Publié le :
DOI : 10.5802/msia.9
Aftalion, Amandine 1 ; Despaigne, Louis-Henri 2 ; Frentz, Alexis 2 ; Gabet, Pierre 2 ; Lajouanie, Antoine 2 ; Lorthiois, Marc-Antoine 2 ; Roquette, Lucien 2 ; Vernet, Camille 2

1 Laboratoire de Mathématiques de Versailles, UVSQ, CNRS, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035 Versailles Cédex, France.
2 Ecole Polytechnique, University Paris-Saclay, Route de Saclay, 91128 Palaiseau Cedex, France.
@article{MSIA_2016__7_1_1_0,
     author = {Aftalion, Amandine and Despaigne, Louis-Henri and Frentz, Alexis and Gabet, Pierre and Lajouanie, Antoine and Lorthiois, Marc-Antoine and Roquette, Lucien and Vernet, Camille},
     title = {How to identify the physiological parameters and run the optimal race},
     journal = {MathematicS In Action},
     pages = {1--10},
     publisher = {Soci de Mathtiques Appliqu et Industrielles},
     volume = {7},
     number = {1},
     year = {2016},
     doi = {10.5802/msia.9},
     mrnumber = {3472390},
     zbl = {1343.92093},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/msia.9/}
}
TY  - JOUR
AU  - Aftalion, Amandine
AU  - Despaigne, Louis-Henri
AU  - Frentz, Alexis
AU  - Gabet, Pierre
AU  - Lajouanie, Antoine
AU  - Lorthiois, Marc-Antoine
AU  - Roquette, Lucien
AU  - Vernet, Camille
TI  - How to identify the physiological parameters and run the optimal race
JO  - MathematicS In Action
PY  - 2016
SP  - 1
EP  - 10
VL  - 7
IS  - 1
PB  - Soci de Mathtiques Appliqu et Industrielles
UR  - http://www.numdam.org/articles/10.5802/msia.9/
DO  - 10.5802/msia.9
LA  - en
ID  - MSIA_2016__7_1_1_0
ER  - 
%0 Journal Article
%A Aftalion, Amandine
%A Despaigne, Louis-Henri
%A Frentz, Alexis
%A Gabet, Pierre
%A Lajouanie, Antoine
%A Lorthiois, Marc-Antoine
%A Roquette, Lucien
%A Vernet, Camille
%T How to identify the physiological parameters and run the optimal race
%J MathematicS In Action
%D 2016
%P 1-10
%V 7
%N 1
%I Soci de Mathtiques Appliqu et Industrielles
%U http://www.numdam.org/articles/10.5802/msia.9/
%R 10.5802/msia.9
%G en
%F MSIA_2016__7_1_1_0
Aftalion, Amandine; Despaigne, Louis-Henri; Frentz, Alexis; Gabet, Pierre; Lajouanie, Antoine; Lorthiois, Marc-Antoine; Roquette, Lucien; Vernet, Camille. How to identify the physiological parameters and run the optimal race. MathematicS In Action, Tome 7 (2016) no. 1, pp. 1-10. doi : 10.5802/msia.9. http://www.numdam.org/articles/10.5802/msia.9/

[1] Aftalion, A.; Bonnans, J.F. Optimization of running strategies based on anaerobic energy and variations of velocity, SIAM Journal on Applied Mathematics, Volume 74 (2014) no. 5, pp. 1615-1636 | DOI | MR | Zbl

[2] Behncke, H. A mathematical model for the force and energetics in competitive running, Journal of mathematical biology, Volume 31 (1993) no. 8, pp. 853-878 | DOI | Zbl

[3] Bonnans, F.; Grelard, V.; Martinon, P. Bocop, the optimal control solver, open source toolbox for optimal control problems, URL http://bocop.org (2011)

[4] Hanon, C.; Leveque, J-M.; Thomas, C.; Vivier, L. Pacing Strategy and VO2 ˙ Kinetics during a 1500-m Race, International journal of sports medicine, Volume 29 (2008) no. 03, pp. 206-211 | DOI

[5] Hanon, C.; Thomas, C. Effects of optimal pacing strategies for 400-, 800-, and 1500-m races on the VO2 ˙ response, Journal of sports sciences, Volume 29 (2011) no. 9, pp. 905-912 | DOI

[6] Keller, J. B. A theory of competitive running, Physics today (1973), 43 pages

[7] Keller, J. B. Optimal velocity in a race, American Mathematical Monthly (1974), pp. 474-480 | DOI | MR | Zbl

[8] Maroński, R. Minimum-time running and swimming: an optimal control approach, Journal of biomechanics, Volume 29 (1996) no. 2, pp. 245-249 | DOI

[9] Morton, R. H. A 3-parameter critical power model, Ergonomics, Volume 39 (1996) no. 4, pp. 611-619 | DOI

[10] Morton, R. H. The critical power and related whole-body bioenergetic models, European journal of applied physiology, Volume 96 (2006) no. 4, pp. 339-354 | DOI

[11] Peronnet, F.; Massicote, D. Table of nonprotein respiratory quotient: an update., Can J Sport Sci, Volume 9 (1991), pp. 16-23

[12] Pitcher, A. B. Optimal strategies for a two-runner model of middle-distance running, SIAM Journal on Applied Mathematics, Volume 70 (2009) no. 4, pp. 1032-1046 | DOI | MR | Zbl

[13] Quinn, M. The effects of wind and altitude in the 400-m sprint, Journal of sports sciences, Volume 22 (2004) no. 11-12, pp. 1073-1081 | DOI

[14] Thiel, C.; Foster, C.; Banzer, W.; De Koning, J. Pacing in Olympic track races: competitive tactics versus best performance strategy, Journal of sports sciences, Volume 30 (2012) no. 11, pp. 1107-1115 | DOI

[15] Tucker, R.; Lambert, M. I.; Noakes, T. D. An analysis of pacing strategies during men’s world-record performances in track athletics, International journal of sports physiology and performance, Volume 1 (2006) no. 3, 233 pages | DOI

[16] Tucker, R.; Noakes, T. D The physiological regulation of pacing strategy during exercise: a critical review, British journal of sports medicine, Volume 43 (2009) no. 6, p. e1-e1 | DOI

[17] Ward-Smith, A.J. A mathematical theory of running, based on the first law of thermodynamics, and its application to the performance of world-class athletes, Journal of biomechanics, Volume 18 (1985) no. 5, pp. 337-349 | DOI

[18] Woodside, W. The optimal strategy for running a race (a mathematical model for world records from 50 m to 275 km), Mathematical and computer modelling, Volume 15 (1991) no. 10, pp. 1-12 | DOI | MR | Zbl

Cité par Sources :