Mathematical Homogenization in the Modelling of Digestion in the Small Intestine
MathematicS In Action, Volume 6 (2013) no. 1, pp. 1-19.

Digestion in the small intestine is the result of complex mechanical and biological phenomena which can be modelled at different scales. In a previous article, we introduced a system of ordinary differential equations for describing the transport and degradation-absorption processes during the digestion. The present article sustains this simplified model by showing that it can be seen as a macroscopic version of more realistic models including biological phenomena at lower scales. In other words, our simplified model can be considered as a limit of more realistic ones by averaging-homogenization methods on biological processes representation.

Published online:
DOI: 10.5802/msia.7
Classification: 92A09, 35B27, 34C29, 49L25
Keywords: Digestion in the small intestine, peristalsis, intestinal villi, homogenization, viscosity solutions
Taghipoor, Masoomeh 1, 2; Barles, Guy 1; Georgelin, Christine 1; Licois, Jean-René 1; Lescoat, Philippe 2

1 Laboratoire de Mathématiques et Physique Théorique (UMR CNRS 7350). Fédération Denis Poisson (FR CNRS 2964) Université de Tours. Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
2 INRA, UR83 Recherches Avicoles, 37380 Nouzilly, France.
@article{MSIA_2013__6_1_1_0,
     author = {Taghipoor, Masoomeh and Barles, Guy and Georgelin, Christine and Licois, Jean-Ren\'e and Lescoat, Philippe},
     title = {Mathematical {Homogenization} in the {Modelling} of {Digestion} in the {Small} {Intestine}},
     journal = {MathematicS In Action},
     pages = {1--19},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {6},
     number = {1},
     year = {2013},
     doi = {10.5802/msia.7},
     mrnumber = {3084696},
     zbl = {1350.92011},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/msia.7/}
}
TY  - JOUR
AU  - Taghipoor, Masoomeh
AU  - Barles, Guy
AU  - Georgelin, Christine
AU  - Licois, Jean-René
AU  - Lescoat, Philippe
TI  - Mathematical Homogenization in the Modelling of Digestion in the Small Intestine
JO  - MathematicS In Action
PY  - 2013
SP  - 1
EP  - 19
VL  - 6
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/msia.7/
DO  - 10.5802/msia.7
LA  - en
ID  - MSIA_2013__6_1_1_0
ER  - 
%0 Journal Article
%A Taghipoor, Masoomeh
%A Barles, Guy
%A Georgelin, Christine
%A Licois, Jean-René
%A Lescoat, Philippe
%T Mathematical Homogenization in the Modelling of Digestion in the Small Intestine
%J MathematicS In Action
%D 2013
%P 1-19
%V 6
%N 1
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/msia.7/
%R 10.5802/msia.7
%G en
%F MSIA_2013__6_1_1_0
Taghipoor, Masoomeh; Barles, Guy; Georgelin, Christine; Licois, Jean-René; Lescoat, Philippe. Mathematical Homogenization in the Modelling of Digestion in the Small Intestine. MathematicS In Action, Volume 6 (2013) no. 1, pp. 1-19. doi : 10.5802/msia.7. http://www.numdam.org/articles/10.5802/msia.7/

[1] Barles, G. Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques & Applications (Berlin) [Mathematics & Applications], 17, Springer-Verlag, Paris, 1994 | Zbl

[2] Barles, G. Nonlinear Neumann boundary conditions for quasilinear degenerate elliptic equations and applications, J. Differential Equations, Volume 154 (1999) no. 1, pp. 191-224 | DOI | MR | Zbl

[3] Barles, G.; Da Lio, F.; Lions, P.-L.; Souganidis, P. E. Ergodic problems and periodic homogenization for fully nonlinear equations in half-space type domains with Neumann boundary conditions, Indiana Univ. Math. J., Volume 57 (2008) no. 5, pp. 2355-2375 | DOI | MR | Zbl

[4] Crandall, M. G.; Ishii, H.; Lions, P.-L. User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), Volume 27 (1992) no. 1, pp. 1-67 | DOI | MR | Zbl

[5] Evans, L. C. The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, Volume 111 (1989) no. 3-4, pp. 359-375 | DOI | MR | Zbl

[6] Evans, L. C. Periodic homogenisation of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, Volume 120 (1992) no. 3-4, pp. 245-265 | DOI | MR | Zbl

[7] Ishii, H. Perron’s method for Hamilton-Jacobi equations, Duke Math. J., Volume 55 (1987) no. 2, pp. 369-384 | DOI | MR | Zbl

[8] Keener, J.; Sneyd, J. Mathematical physiology. Vol. II: Systems physiology, Interdisciplinary Applied Mathematics, 8/, Springer, New York, 2009 | DOI | MR | Zbl

[9] Logan, J. D.; Joern, A.; Wolesensky, W. Location, time, and temperature dependence of digestion in simple animal tracts, J. Theoret. Biol., Volume 216 (2002) no. 1, pp. 5-18 | DOI | MR

[10] Mernone, A. V.; Mazumdar, J. N.; Lucas, S. K. A mathematical study of peristaltic transport of a Casson fluid, Math. Comput. Modelling, Volume 35 (2002) no. 7-8, pp. 895-912 | DOI | MR | Zbl

[11] Miftahof, R.; Akhmadeev, N. Dynamics of intestinal propulsion, J. Theoret. Biol., Volume 246 (2007) no. 2, pp. 377-393 | DOI | MR | Zbl

[12] Piccinini, L. C. Homogeneization problems for ordinary differential equations, Rend. Circ. Mat. Palermo (2), Volume 27 (1978) no. 1, pp. 95-112 | DOI | MR | Zbl

[13] Randall, D.; Burggren, W.; French, K.; Eckert, R. Eckert Animal Physiology: Mechanisms and Adaptations, W.H. Freeman & Company, 1997 http://amazon.com/o/ASIN/0716724146/

[14] Rivest, J.; Bernier, J. F.; Pomar, C. A dynamic model of protein digestion in the small intestine of pigs, J Anim Sci, Volume 78 (2000) no. 2, pp. 328-340 | DOI

[15] Taghipoor, M.; Lescoat, P.; Licois, J.-R.; Georgelin, Ch.; Barles, G. Mathematical modeling of transport and degradation of feedstuffs in the small intestine, Journal of Theoretical Biology, Volume 294 (2012), pp. 114 -121 http://www.sciencedirect.com/science/article/pii/S002251931100539X | DOI | Zbl

[16] Yamauchi, K.E. Review of a histological intestinal approach to assessing the intestinal function in chickens and pigs, Animal Science Journal, Volume 78 (2007), pp. 356-370 | DOI

[17] Zhao, X. T.; McCamish, M. A.; Miller, R. H.; Wang, L.; Lin, H. C. Intestinal transit and absorption of soy protein in dogs depend on load and degree of protein hydrolysis., J Nutr, Volume 127 (1997) no. 12, pp. 2350-2356 | DOI

Cited by Sources: