Estimation for dynamical systems using a population-based Kalman filter – Applications in computational biology
MathematicS In Action, Tome 11 (2022) no. 1, pp. 213-242.

Estimation of dynamical systems (in particular, identification of their parameters) is fundamental in computational biology, e.g., pharmacology, virology, or epidemiology, to reconcile model runs with available measurements. Unfortunately, the mean and variance priors of the parameters must be chosen very appropriately to balance our distrust of the measurements when the data are sparse or corrupted by noise. Otherwise, the identification procedure fails. One option is to use repeated measurements collected in configurations with common priors (for example, with multiple subjects in a clinical trial or clusters in an epidemiological investigation). This shared information is beneficial and is typically modeled in statistics using nonlinear mixed-effects models. In this paper, we present a data assimilation method that is compatible with such a mixed-effects strategy without being compromised by the potential curse of dimensionality. We define population-based estimators through maximum likelihood estimation. We then develop an equivalent robust sequential estimator for large populations based on filtering theory that sequentially integrates data. Finally, we limit the computational complexity by defining a reduced-order version of this population-based Kalman filter that clusters subpopulations with common observational backgrounds. The performance of the resulting algorithm is evaluated against classical pharmacokinetics benchmarks. Finally, the versatility of the proposed method is tested in an epidemiological study using real data on the hospitalisation of COVID-19 patients in the regions and departments of France.

Publié le :
DOI : 10.5802/msia.25
Classification : 62L12, 93B53, 92-08, 62P10
Mots clés : Data Assimilation, Non linear mixed-effect models, Kalman Filters, Epidemiology, COVID-19, Pharmacokinetics
Collin, Annabelle 1 ; Prague, Mélanie 2 ; Moireau, Philippe 3

1 IMB UMR 5251, Université Bordeaux – Inria, Université Bordeaux, Talence, France
2 Univ. Bordeaux, Department of Public Health, Inserm Bordeaux Population Health Research Center, Inria SISTM, UMR 1219, Bordeaux, France; Vaccine Research institute, Créteil, France
3 Inria – LMS, CNRS UMR 7649, Ecole Polytechnique, Institut Polytechnique de Paris, 1 Rue Honoré d’Estienne d’Orves, Palaiseau, France
@article{MSIA_2022__11_1_213_0,
     author = {Collin, Annabelle and Prague, M\'elanie and Moireau, Philippe},
     title = {Estimation for dynamical systems using a population-based {Kalman} filter {\textendash} {Applications} in computational biology},
     journal = {MathematicS In Action},
     pages = {213--242},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {11},
     number = {1},
     year = {2022},
     doi = {10.5802/msia.25},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/msia.25/}
}
TY  - JOUR
AU  - Collin, Annabelle
AU  - Prague, Mélanie
AU  - Moireau, Philippe
TI  - Estimation for dynamical systems using a population-based Kalman filter – Applications in computational biology
JO  - MathematicS In Action
PY  - 2022
SP  - 213
EP  - 242
VL  - 11
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/msia.25/
DO  - 10.5802/msia.25
LA  - en
ID  - MSIA_2022__11_1_213_0
ER  - 
%0 Journal Article
%A Collin, Annabelle
%A Prague, Mélanie
%A Moireau, Philippe
%T Estimation for dynamical systems using a population-based Kalman filter – Applications in computational biology
%J MathematicS In Action
%D 2022
%P 213-242
%V 11
%N 1
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/msia.25/
%R 10.5802/msia.25
%G en
%F MSIA_2022__11_1_213_0
Collin, Annabelle; Prague, Mélanie; Moireau, Philippe. Estimation for dynamical systems using a population-based Kalman filter – Applications in computational biology. MathematicS In Action, Tome 11 (2022) no. 1, pp. 213-242. doi : 10.5802/msia.25. http://www.numdam.org/articles/10.5802/msia.25/

[1] Angulo, F. J.; Finelli, L.; Swerdlow, D. L. Estimation of US SARS-CoV-2 Infections, Symptomatic Infections, Hospitalizations, and Deaths Using Seroprevalence Surveys, JAMA Network Open, Volume 4 (2021) no. 1, p. e2033706 | DOI

[2] Asch, M.; Bocquet, M.; Nodet, M. Data assimilation: methods, algorithms, and applications, Fundamentals of Algorithms, Society for Industrial and Applied Mathematics, 2016, xviii+306 pages | DOI | HAL

[3] Barrau, A.; Bonnabel, S. The invariant extended Kalman filter as a stable observer, IEEE Trans. Autom. Control, Volume 62 (2017) no. 4, pp. 1797-1812 | DOI | MR | Zbl

[4] Bensoussan, A. Estimation and Control of Dynamical Systems, Interdisciplinary Applied Mathematics, Springer, 2018 | DOI

[5] Blum, J.; Le Dimet, F.-X.; Navon, I. M. Data assimilation for geophysical fluids, Handbook of Numerical Analysis: Computational Methods for the Atmosphere and the Oceans (Temam, R.; Tribbia, J., eds.), Elsevier, 2008, pp. 385-441

[6] Caiazzo, A.; Caforio, F.; Montecinos, G.; Muller, L. O.; Blanco, P. J.; Toro, E. F. Assessment of reduced-order unscented Kalman filter for parameter identification in 1-dimensional blood flow models using experimental data., Int. J. Numer. Methods Biomed. Eng., Volume 33 (2017) no. 8, p. e2843 | DOI | MR

[7] Carpenter, B.; Gelman, A.; Hoffman, M. D.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.; Guo, J.; Li, P.; Riddell, A. Stan: A probabilistic programming language, J. Stat. Softw., Volume 76 (2017) no. 1 | DOI

[8] Cevik, M.; Tate, M.; Lloyd, O.; Maraolo, A. E.; Schafers, J.; Ho, A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis, The Lancet Microbe (2020)

[9] Chapelle, D.; Fragu, M.; Mallet, V.; Moireau, P. Fundamental principles of data assimilation underlying the Verdandi library: applications to biophysical model personalization within euHeart, Med. Biol. Eng. Comput., Volume 51 (2013), pp. 1221-1233 | DOI

[10] Chapelle, D.; Gariah, A.; Moireau, P.; Sainte-Marie, J. A Galerkin strategy with Proper Orthogonal Decomposition for parameter-dependent problems – Analysis, assessments and applications to parameter estimation, ESAIM, Math. Model. Numer. Anal., Volume 47 (2013) no. 6, pp. 1821-1843 | DOI | Numdam | MR | Zbl

[11] Comets, E.; Lavenu, A.; Lavielle, M. Parameter estimation in nonlinear mixed effect models using saemix, an R implementation of the SAEM algorithm, J. Stat. Softw., Volume 80 (2017), pp. 1-41 | DOI

[12] Delattre, M.; Lavielle, M. Coupling the SAEM algorithm and the extended Kalman filter for maximum likelihood estimation in mixed-effects diffusion models, Stat. Interface, Volume 6 (2013) no. 4, pp. 519-532 | DOI | MR | Zbl

[13] Delfraissy, J.-F.; Atlani Duault, L.; Benamouzig, D.; Bouadma, L.; Cauchemez, S.; Chauvin, F.; Fontanet, A.; Hoang, A.; Malvy, D.; Yazdanpanah, Y. Une deuxième vague entrainant une situation sanitaire critique, 2020 (Note du Conseil scientifique COVID-19)

[14] Denwood, M. J. runjags: An R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS, J. Stat. Softw., Volume 71 (2016) no. 9, pp. 1-25 | DOI

[15] Di Domenico, L.; Pullano, G.; Sabbatini, C. E.; Boëlle, P.-Y.; Colizza, V. Impact of lockdown on COVID-19 epidemic in Île-de-France and possible exit strategies, BMC Medicine, Volume 18 (2020) no. 1, pp. 1-13 | DOI

[16] Duffull, S. B.; Kirkpatrick, C. M. J.; Green, B.; Holford, N. H. G. Analysis of population pharmacokinetic data using NONMEM and WinBUGS, J. Biopharm. Stat., Volume 15 (2004) no. 1, pp. 53-73 | DOI | MR

[17] Evans, L. C. An introduction to stochastic differential equations, American Mathematical Society, 2012

[18] Evensen, G. Data Assimilation: The Ensemble Kalman Filter, Springer, 2009 | DOI

[19] Gelb, A.; Kasper, J. F.; Nash, R. A.; Price, C. F.; Sutherland, A. A. Applied Optimal Estimation, MIT Press, 1974

[20] He, J.; Guo, Y.; Mao, R.; Zhang, J. Proportion of asymptomatic coronavirus disease 2019: A systematic review and meta-analysis, J. Med. Virol., Volume 93 (2021) no. 2, pp. 820-830 | DOI

[21] Heffernan, J. M.; Smith, R. J.; Wahl, L. M. Perspectives on the basic reproductive ratio, J. R. Soc. Interface, Volume 2 (2005) no. 4, pp. 281-293 | DOI

[22] Julier, S. J.; Uhlmann, J. K. A new extension of the Kalman filter to nonlinear systems, Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defence Sensing, Simulation and Controls (1997)

[23] Kalman, R.; Bucy, R. New results in linear filtering and prediction theory, Trans. ASME J. Basic. Eng., Volume 83 (1961), p. 95--108 | DOI | MR

[24] Klim, S.; Mortensen, S. B.; Kristensen, N. R.; Overgaard, R. V.; Madsen, H. Population stochastic modelling (PSM)—an R package for mixed-effects models based on stochastic differential equations, Comput. Methods Programs Biomed., Volume 94 (2009) no. 3, pp. 279-289 | DOI

[25] Kuhn, E.; Lavielle, M. Maximum likelihood estimation in nonlinear mixed effects models, Comput. Stat. Data Anal., Volume 49 (2005) no. 4, pp. 1020-1038 | DOI | MR | Zbl

[26] Laird, N. M.; Ware, J. H. Random-effects models for longitudinal data, Biometrics, Volume 38 (1982) no. 4, pp. 963-974 | DOI | Zbl

[27] Lauer, S.; Grantz, K.; Bi, Q.; Jones, F.; Zheng, Q.; Meredith, H.; Azman, A.; Reich, N.; Lessler, J. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application, Ann. Intern. Med., Volume 172 (2020) no. 9, pp. 577-582 | DOI

[28] Lavielle, M. Mixed effects models for the population approach: models, tasks, methods and tools, CRC Press, 2014 | DOI

[29] Lavielle, M.; Faron, M.; Lefevre, J.; Zeitoun, J.-D. Extension of a SIR model for modelling the propagation of Covid-19 in several countries. (2020) (https://www.medrxiv.org/content/early/2020/05/21/2020.05.17.20104885) | DOI

[30] Law, K.; Stuart, A.; Zygalakis, K. Data assimilation: A mathematical introduction, Texts in Applied Mathematics, 62, Springer, 2015 | DOI

[31] Li, R.; Pei, S.; Chen, B.; Song, Y.; Zhang, T.; Yang, W.; Shaman, J. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2), Science, Volume 368 (2020) no. 6490, pp. 489-493 | DOI

[32] Liu, X.; Wang, Y. Comparing the performance of [FOCE] and different expectation-maximization methods in handling complex population physiologically-based pharmacokinetic models, J. Pharmacokinet. Pharmacodyn., Volume 43 (2016) no. 4, pp. 359-370 | DOI

[33] Moireau, P.; Chapelle, D. Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems, ESAIM, Control Optim. Calc. Var., Volume 17 (2011) no. 2, pp. 380-405 | DOI | Numdam | MR | Zbl

[34] Moireau, P.; Chapelle, D. Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems, ESAIM, Control Optim. Calc. Var., Volume 17 (2011) no. 2, pp. 380-405 | DOI | Numdam | MR | Zbl

[35] Oberg, A.; Davidian, M. Estimating Data Transformations in Nonlinear Mixed Effects Models, Biometrics, Volume 56 (2000) no. 1, pp. 65-72 | DOI | Zbl

[36] Overgaard, R. V.; Jonsson, N.; Tornøe, C. W.; Madsen, H. Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm, J. Pharmacokinet. Pharmacodyn., Volume 32 (2005) no. 1, pp. 85-107 | DOI

[37] Pan, A.; Liu, L.; Wang, C.; Guo, H.; Hao, X.; Wang, Q.; Huang, J.; He, N.; Yu, H.; Lin, X. et al. Association of public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China, J. Am. Med. Soc., Volume 323 (2020) no. 19, pp. 1915-1923

[38] Perasso, A. An introduction to the basic reproduction number in mathematical epidemiology, ESAIM, Proc. Surv., Volume 62 (2018), pp. 123-138 | DOI | MR | Zbl

[39] Perelson, A. S.; Neumann, A. U.; Markowitz, M.; Leonard, J. M.; Ho, D. D. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, Volume 271 (1996) no. 5255, pp. 1582-1586 | DOI

[40] Pham, D. T. Stochastic methods for sequential data assimilation in strongly nonlinear systems, Monthly Weather Review, Volume 129 (2001) no. 5, pp. 1194-1207 | DOI

[41] Pham, D. T.; Verron, J.; Gourdeau, L. Filtres de Kalman singuliers évolutifs pour l’assimilation de données en océanographie, C. R. Acad. Sci., Sér. IIA Earth Planet. Sci., Volume 326 (1998) no. 4, pp. 255-260

[42] Pham, D. T.; Verron, J.; Roubaud, C. M. A singular evolutive extended Kalman filter for data assimilation in oceanography, J. Marine Syst., Volume 16 (1998) no. 3-4, pp. 323-340 | DOI

[43] Pinheiro, J. C.; Bates, D. M. Approximations to the log-likelihood function in the nonlinear mixed-effects model, J. Comput. Graph. Stat., Volume 4 (1995) no. 1, pp. 12-35

[44] Plan, E. L.; Maloney, A.; Mentré, F.; Karlsson, M. O.; Bertrand, J. Performance comparison of various maximum likelihood nonlinear mixed-effects estimation methods for dose–response models, AAPS J., Volume 14 (2012) no. 3, pp. 420-432 | DOI

[45] Prague, M. Use of dynamical models for treatment optimization in HIV infected patients: a sequential Bayesian analysis approach., J. Soc. Fr. Stat., Volume 157 (2016) no. 2, p. 20 | Numdam | MR | Zbl

[46] Prague, M.; Commenges, D.; Guedj, J.; Drylewicz, J.; Thiébaut, R. NIMROD : A program for inference via a normal approximation of the posterior in models with random effects based on ordinary differential equations, Comput. Methods Programs Biomed., Volume 111 (2013) no. 2, pp. 447-458 | DOI

[47] Salje, H.; Kiem, C. T.; Lefrancq, N.; Courtejoie, N.; Bosetti, P.; Paireau, J.; Andronico, A.; Hozé, N.; Richet, J.; Dubost, C.-L. et al. Estimating the burden of SARS-CoV-2 in France, Science, Volume 369 (2020) no. 6500, pp. 208-211 | DOI

[48] Schumacher, F. L.; Ferreira, C. S.; Prates, M. O.; Lachos, A.; Lachos, V. H. A robust nonlinear mixed-effects model for COVID-19 deaths data, Int. J. Numer. Methods Biomed. Eng., Volume 14 (2021) no. 1, pp. 39-57 | MR

[49] Simon, D. Optimal State Estimation: Kalman, H , and Nonlinear Approaches, Wiley-Interscience, 2006 | DOI

[50] Tornøe, C. W.; Overgaard, R. V.; Agersø, H.; Nielsen, H. A .; Madsen, H.; Jonsson, E. N. Stochastic differential equations in NONMEM®: implementation, application, and comparison with ordinary differential equations, Pharm. Res., Volume 22 (2005) no. 8, pp. 1247-1258 | DOI

[51] Upton, R. A. Pharmacokinetic interactions between theophylline and other medication (Part I), Clin. Pharmacokin., Volume 20 (1991) no. 1, pp. 66-80 | DOI

[52] Verbeke, G. Linear mixed models for longitudinal data, Linear mixed models in practice, Springer, 1997, pp. 63-153 | DOI

[53] Wakefield, J.; Racine-Poon, A. An application of Bayesian population pharmacokinetic/pharmacodynamic models to dose recommendation, Stat. Med., Volume 14 (1995) no. 9, pp. 971-986 | DOI

[54] Wu, H. Statistical methods for HIV dynamic studies in AIDS clinical trials, Stat. Methods Med. Res., Volume 14 (2005) no. 2, pp. 171-192 | DOI | MR | Zbl

Cité par Sources :