Optimal strokes for the 4-sphere swimmer at low Reynolds number in the regime of small deformations
MathematicS In Action, Tome 11 (2022) no. 1, pp. 167-192.

The paper deals with the optimal control problem that arises when one studies the 4 sphere artificial swimmer at low Reynolds number. Composed of four spheres at the end of extensible arms, the swimmer is known to be able to swim in all directions and orientations in the 3D space. In this paper, optimal strokes, in terms of the energy expended by the swimmer to reach a prescribed net displacement, are fully described in the regime of small strokes. In particular, we introduce a bivector formalism to model the displacements that turns out to be elegant and practical. Numerical simulations are also provided that confirm the theoretical predictions.

Publié le :
DOI : 10.5802/msia.23
Classification : 15-04, 34H05, 49K15, 76Z10, 93C15
Mots clés : Low Reynolds number swimming, optimal strokes, periodic control
Alouges, François 1 ; Lefebvre-Lepot, Aline 1 ; Weder, Philipp 2

1 CMAP, Ecole polytechnique et CNRS, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau Cedex, France
2 EPFL, Rue Louis-Favre 4, CH-1024 Ecublens, Switzerland
@article{MSIA_2022__11_1_167_0,
     author = {Alouges, Fran\c{c}ois and Lefebvre-Lepot, Aline and Weder, Philipp},
     title = {Optimal strokes for the 4-sphere swimmer at low {Reynolds} number in the regime of small deformations},
     journal = {MathematicS In Action},
     pages = {167--192},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {11},
     number = {1},
     year = {2022},
     doi = {10.5802/msia.23},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/msia.23/}
}
TY  - JOUR
AU  - Alouges, François
AU  - Lefebvre-Lepot, Aline
AU  - Weder, Philipp
TI  - Optimal strokes for the 4-sphere swimmer at low Reynolds number in the regime of small deformations
JO  - MathematicS In Action
PY  - 2022
SP  - 167
EP  - 192
VL  - 11
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/msia.23/
DO  - 10.5802/msia.23
LA  - en
ID  - MSIA_2022__11_1_167_0
ER  - 
%0 Journal Article
%A Alouges, François
%A Lefebvre-Lepot, Aline
%A Weder, Philipp
%T Optimal strokes for the 4-sphere swimmer at low Reynolds number in the regime of small deformations
%J MathematicS In Action
%D 2022
%P 167-192
%V 11
%N 1
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/msia.23/
%R 10.5802/msia.23
%G en
%F MSIA_2022__11_1_167_0
Alouges, François; Lefebvre-Lepot, Aline; Weder, Philipp. Optimal strokes for the 4-sphere swimmer at low Reynolds number in the regime of small deformations. MathematicS In Action, Tome 11 (2022) no. 1, pp. 167-192. doi : 10.5802/msia.23. http://www.numdam.org/articles/10.5802/msia.23/

[1] Agrachev, Andrei A.; Sachkov, Yuri L. Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87, Springer, 2004 | DOI | Zbl

[2] Alouges, François; DeSimone, Antonio; Heltai, Luca; Lefebvre-Lepot, Aline; Merlet, Benoît Optimally swimming stokesian robots, Discrete Contin. Dyn. Syst., Ser. B, Volume 18 (2013) no. 5, pp. 1189-1215 | DOI | MR | Zbl

[3] Alouges, François; DeSimone, Antonio; Lefebvre, Aline Optimal Strokes for Low Reynolds Number Swimmers: An Example, J. Nonlinear Sci., Volume 18 (2008) no. 3, pp. 277-302 | DOI | MR | Zbl

[4] Alouges, François; Di Fratta, Giovanni Parking 3-sphere swimmer. I. Energy minimizing strokes, Discrete Contin. Dyn. Syst., Volume 23 (2018) no. 4 | MR | Zbl

[5] Alouges, François; Di Fratta, Giovanni Parking 3-sphere swimmer: II. The long-arm asymptotic regime, Eur. Phys. J. E, Volume 43 (2020) no. 2 | DOI

[6] Arsenovic, Alaex; Hadfield, Hugo; Wieser, Eric; Kern, Robert; The Pygae Team pygae/clifford: v1.3.1, 2020 | DOI

[7] Avron, Joseph E.; Gat, Omri; Kenneth, Oded Optimal Swimming at Low Reynolds Numbers, Phys. Rev. Lett., Volume 93 (2004) no. 18 | DOI

[8] Bonnard, Bernard; Chyba, Monique; Rouot, Jérémy Geometric and Numerical Optimal Control: Application to Swimming at Low Reynolds Number and Magnetic Resonance Imaging, SpringerBriefs in Mathematics, Springer, 2018 | DOI

[9] Cicconofri, Giancarlo; DeSimone, Antonio Modelling biological and bio-inspired swimming at microscopic scales: Recent results and perspectives, Comput. Fluids, Volume 179 (2019), pp. 799-805 | DOI | MR | Zbl

[10] Dreyfus, Rémi; Baudry, Jean; Stone, Howard A. Purcell’s “rotator”: mechanical rotation at low Reynolds number, Eur. Phys. J. B, Condens. Matter Complex Syst., Volume 47 (2005) no. 1, pp. 161-164 | DOI

[11] Gompper, Gerhard; Winkler, Roland; Speck, Thomas; Solon, Alexandre; Nardini, Cesare; Peruani, Fernando; Löwen, Hartmut; Golestanian, Ramin; Kaupp, Benjamin; Alvarez, Luis; Kiørboe, Thomas; Lauga, Eric; Poon, Wilson; DeSimone, Antonio; Muiños-Landin, Santiago; Fischer, Alexander; Söker, Nicola; Cichos, Frank; Kapral, Raymond; Gaspard, Pierre; Ripoll, Marisol; Sagues, Francesc; Doostmohammadi, Amin; Yeomans, Julia; Aranson, Igor; Bechinger, Clemens; Stark, Holger; Hemelrijk, Charlotte; Nedelec, François; Sarkar, Trinish; Aryaksama, Thibault; Lacroix, Mathilde; Duclos, Guillaume; Yashunsky, Victor; Silberzan, Pascal; Arroyo, Marino; Kale, Sohan The 2020 Motile Active Matter Roadmap, J. Phys.: Condens. Matter, Volume 32 (2020), p. 193001

[12] Hall, Brian C. Lie Groups, Lie Algebras, and Representations, Graduate Texts in Mathematics, 222, Springer, 2015 | DOI

[13] Kielhöfer, Hansjörg Calculus of variations. An introduction to the one-dimensional theory with examples and exercises, Texts in Applied Mathematics, 67, Springer, 2018 | DOI | MR

[14] Lauga, Eric; Powers, Thomas R. The hydrodynamics of swimming microorganisms, Rep. Prog. Phys., Volume 72 (2009) no. 9 | MR

[15] Lighthill, Michael J. On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers, Commun. Pure Appl. Math., Volume 5 (1952) no. 2, pp. 109-118 | DOI | MR | Zbl

[16] Lohéac, Jérôme; Munnier, Alexandre Controllability of 3D low Reynolds swimmers, ESAIM, Control Optim. Calc. Var., Volume 20 (2014) no. 1, pp. 236-268 | DOI | Numdam | MR | Zbl

[17] Lounesto, Pertti Clifford Algebras and Spinors, Cambridge University Press, 2006, 352 pages

[18] Najafi, Ali; Golestanian, Ramin Simple swimmer at low Reynolds number: Three linked spheres, Phys. Rev. E, Volume 69 (2004) no. 6 | DOI

[19] Purcell, Edward M. Life at low Reynolds number, Am. J. Phys., Volume 45 (1977) no. 1, pp. 3-11 | DOI

[20] Rossi, Massimilliano; Cicconofri, Giancarlo; Beran, Alfred; Noselli, Giovanni; DeSimone, Antonio Kinematics of flagellar swimming in Euglena gracilis: Helical trajectories and flagellar shapes, Proc. Natl. Acad. Sci. USA, Volume 114 (2017) no. 50, pp. 13085-13090 | DOI

Cité par Sources :