Heuristic imaging from generic projections: backprojection outside the range of the Radon transform
MathematicS In Action, Tome 9 (2020) no. 1, pp. 1-16.

Reflective tomography is an efficient method for optical imaging in the visible and near infrared ranges. It computes empirical reconstructions based on algorithms from X-ray tomography. This subject introduces mathematical gaps to be filled, about the meaning of the reconstructions, and about their artifacts. To tackle these questions, we study more generally the filtered backprojection on projections outside the range of the Radon transform. We consider generic projections that can involve any kind of physical and geometric parameters. We claim that the backprojection contains partially the geometry of the original scene. More precisely, we compare the singularities of the backprojection with the singularities of a representation of the scene. This comparison of wavefront sets, inspired by studies of the artifacts in X-ray tomography, is based on microlocal analysis. It gives a precise meaning to the well-reconstructed geometry, describes the invisible parts, and the artifacts. We illustrate the heuristic and the analysis principle on canonical cases that belong to various fields: shape from silhouettes, constructible tomography, cloaking, reconstruction from cartoon images, imaging of occluded lambertian objects. Numerical results show the relevance of the heuristic and its analysis. In a word, this study provides a mathematical framework that covers the solver of reflective tomography, and exhibits an imaging method whose range of application is wide.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/msia.12
Classification : 78A97, 94A12, 44A12
Mots clés : 3D imaging, computational optics, reconstruction, Radon transform, geometric tomography
@article{MSIA_2020__9_1_1_0,
     author = {Bellet, Jean-Baptiste and Berginc, G\'erard},
     title = {Heuristic imaging from generic projections: backprojection outside the range of the {Radon} transform},
     journal = {MathematicS In Action},
     pages = {1--16},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {9},
     number = {1},
     year = {2020},
     doi = {10.5802/msia.12},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/msia.12/}
}
TY  - JOUR
AU  - Bellet, Jean-Baptiste
AU  - Berginc, Gérard
TI  - Heuristic imaging from generic projections: backprojection outside the range of the Radon transform
JO  - MathematicS In Action
PY  - 2020
SP  - 1
EP  - 16
VL  - 9
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/msia.12/
DO  - 10.5802/msia.12
LA  - en
ID  - MSIA_2020__9_1_1_0
ER  - 
%0 Journal Article
%A Bellet, Jean-Baptiste
%A Berginc, Gérard
%T Heuristic imaging from generic projections: backprojection outside the range of the Radon transform
%J MathematicS In Action
%D 2020
%P 1-16
%V 9
%N 1
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/msia.12/
%R 10.5802/msia.12
%G en
%F MSIA_2020__9_1_1_0
Bellet, Jean-Baptiste; Berginc, Gérard. Heuristic imaging from generic projections: backprojection outside the range of the Radon transform. MathematicS In Action, Tome 9 (2020) no. 1, pp. 1-16. doi : 10.5802/msia.12. http://www.numdam.org/articles/10.5802/msia.12/

[1] Berginc, G.; Jouffroy, M. Optronic system and method dedicated to identification for formulating three-dimensional images, US patent 20110254924 A1, European patent 2333481 A1, FR 09 05720 B1, 2009

[2] Berginc, G.; Jouffroy, M. 3D Laser Imaging, PIERS Online, Volume 7 (2011) no. 5, pp. 411-415 | DOI

[3] Borg, L.; Frikel, J.; Jørgensen, J. S.; Quinto, E. T. Analyzing Reconstruction Artifacts from Arbitrary Incomplete X-ray CT Data, SIAM J. Imaging Sci., Volume 11 (2018) no. 4, pp. 2786-2814 | DOI | MR | Zbl

[4] Faridani, A.; Ritman, E. L.; Smith, K. T. Local tomography, SIAM J. Appl. Math., Volume 52 (1992) no. 2, pp. 459-484 | DOI | MR | Zbl

[5] Frikel, J.; Quinto, E. T. Characterization and reduction of artifacts in limited angle tomography, Inverse Probl., Volume 29 (2013) no. 12, 125007, 21 pages | DOI | MR | Zbl

[6] Gering, D. T.; Wells, W. M. Object modeling using tomography and photography, Multi-View Modeling and Analysis of Visual Scenes, 1999.(MVIEW’99) Proceedings., IEEE (1999), pp. 11-18

[7] Grigis, A.; Sjöstrand, J. Microlocal analysis for differential operators: an introduction, 196, Cambridge University Press, 1994 | Zbl

[8] Knight, F. K.; Kulkarni, S. R.; Marino, R. M.; Parker, J. K. Tomographic Techniques Applied to Laser Radar Reflective Measurements, Lincoln Laboratory Journal, Volume 2 (1989) no. 2, pp. 143-160

[9] Laurentini, A. The visual hull concept for silhouette-based image understanding, IEEE Trans. Pattern Anal. Mach. Intell., Volume 16 (1994) no. 2, pp. 150-162 | DOI

[10] Natterer, F.; Wübbeling, F. Mathematical methods in image reconstruction, SIAM Monographs on Mathematical Modeling and Computation, 5, Society for Industrial and Applied Mathematics, 2001

[11] Quinto, E. T. Singularities of the X-ray transform and limited data tomography in 2 and 3 , SIAM J. Math. Anal., Volume 24 (1993) no. 5, pp. 1215-1225

[12] Ramm, A. G.; Katsevich, A. I. The Radon transform and local tomography, CRC Press, 1996 | Zbl

[13] Rigaud, G.; Bellet, J.-B.; Berginc, G.; Berechet, I.; Berechet, S. Reflective Imaging Solved by the Radon Transform, IEEE Geoscience and Remote Sensing Letters, Volume 13 (2016), pp. 936-938 | DOI

[14] Schapira, P. Tomography of constructible functions, International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, Springer (1995), pp. 427-435 | DOI | Zbl

[15] Stefanov, P. Microlocal Analysis Methods, Encyclopedia of Applied and Computational Mathematics, Springer, 2015, pp. 914-920 | DOI

Cité par Sources :