A normal number theorem for Brownian motion
Mathematics Research Reports, Tome 2 (2021), pp. 15-20.

We prove that we can generate “a lot” of random normal numbers (in the sense of full Hausdorff dimension), which are outside the scope of Borel’s Normal Number Theorem (in the sense of zero Lebesgue measure). The ingredient is to run Brownian motion over a specific Cantor-like time-set. These are closely related to an equidistributed property of some dynamical orbit with random inputs, which itself is new and significant.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/mrr.7
Classification : 37A05, 11K16, 11K36, 60G15, 60G17
Mots clés : Brownian motion, fractional Brownian motion, equidistribution sequence, normal number, dynamical orbit
Shieh, Narn-Rueih 1

1 Mathematics Department & Applied Math Institute, Emeritus Room, 4F Astro-Math Building, National Taiwan University, Taipei 10617, Taiwan
@article{MRR_2021__2__15_0,
     author = {Shieh, Narn-Rueih},
     title = {A normal number theorem for {Brownian} motion},
     journal = {Mathematics Research Reports},
     pages = {15--20},
     publisher = {MathOA foundation},
     volume = {2},
     year = {2021},
     doi = {10.5802/mrr.7},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/mrr.7/}
}
TY  - JOUR
AU  - Shieh, Narn-Rueih
TI  - A normal number theorem for Brownian motion
JO  - Mathematics Research Reports
PY  - 2021
SP  - 15
EP  - 20
VL  - 2
PB  - MathOA foundation
UR  - http://www.numdam.org/articles/10.5802/mrr.7/
DO  - 10.5802/mrr.7
LA  - en
ID  - MRR_2021__2__15_0
ER  - 
%0 Journal Article
%A Shieh, Narn-Rueih
%T A normal number theorem for Brownian motion
%J Mathematics Research Reports
%D 2021
%P 15-20
%V 2
%I MathOA foundation
%U http://www.numdam.org/articles/10.5802/mrr.7/
%R 10.5802/mrr.7
%G en
%F MRR_2021__2__15_0
Shieh, Narn-Rueih. A normal number theorem for Brownian motion. Mathematics Research Reports, Tome 2 (2021), pp. 15-20. doi : 10.5802/mrr.7. http://www.numdam.org/articles/10.5802/mrr.7/

[1] Balka, R.; Peres, Y. Uniform dimension results for fractional Brownian motion, J. Fractal Geom., Volume 4 (2017), pp. 147-183 | DOI | MR | Zbl

[2] Davenport, H.; Erdős, P.; LeVeque, W. On Weyl’s criterion for uniform distribution, Michigan Math. J., Volume 10 (1963), pp. 311-314 | DOI | MR | Zbl

[3] Falconer, K. Fractal Geometry, Mathematical Foundations and Applications, 1990 | DOI | Zbl

[4] Fraser, J.; Sahlsten, T. On the Fourier analytic structure of the Brownian graph., Analysis & PDE, Volume 11 (2018), pp. 115-132 | DOI | MR | Zbl

[5] Harman, G. On hundred years of normal numbers, Surveys in Number Theory, Papers from The Millennial Conference on Number Theory (Bennett, M.A., ed.), CRC Press, 2003

[6] Hochman, M.; Sherkin, P. Equidistribution from fractal measures, Invent. Math., Volume 202 (2015), pp. 427-479 | DOI | MR

[7] Kahane, J. P. Some Random Series of Functions, Second Edition, Cambridge University Press, 1985

[8] Khoshnevisan, D. Normal numbers are normal, The Clay Institute Report, 2006

[9] Laba, I. Harmonic analysis and the geometry of fractals, Proceedings of the 2014 International Congress of Mathematicians, Seoul, 2014 | MR | Zbl

[10] Mörters, P.; Peres, Y. Brownian Motion, Cambridge Univ. Press, 2010

[11] Shieh, N.-R.; Xiao, Y. Images of Gaussian random fields: Salem sets and interior points, Studia Math., Volume 176 (2006), pp. 37-60 | DOI | MR | Zbl

[12] Taylor, S. J. On the connexion between Hausdorff measures and generalized capacity, Proc. Cambridge Philos. Soc., Volume 57 (1961), pp. 524-531 | DOI | MR | Zbl

Cité par Sources :