Variations on a question concerning the degrees of divisors of x n -1
Journal de théorie des nombres de Bordeaux, Volume 26 (2014) no. 1, pp. 253-267.

In this paper, we examine a natural question concerning the divisors of the polynomial x n -1: “How often does x n -1 have a divisor of every degree between 1 and n?” In a previous paper, we considered the situation when x n -1 is factored in [x]. In this paper, we replace [x] with 𝔽 p [x], where p is an arbitrary-but-fixed prime. We also consider those n where this condition holds for all p.

Dans cet article, nous étudions une question naturelle concernant les diviseurs du polynôme x n -1 : à quelle fréquence x n -1 possède-t-il un diviseur de chaque degré entre 1 et n ? Dans un travail précédent, nous avons étudié la factorisation de x n -1 dans [x]. Pour le présent article, nous étudions la factorisation de ce polynôme dans 𝔽 p [x], où p est un nombre premier fixé. Nous analysons aussi l’ensemble des n pour lesquels x n -1 se factorise dans 𝔽 p [x] pour tout p.

DOI: 10.5802/jtnb.866
Thompson, Lola 1

1 Department of Mathematics Oberlin College Oberlin, OH 44074 USA
@article{JTNB_2014__26_1_253_0,
     author = {Thompson, Lola},
     title = {Variations on a question concerning the degrees of divisors of $x^n-1$},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {253--267},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {26},
     number = {1},
     year = {2014},
     doi = {10.5802/jtnb.866},
     zbl = {06304188},
     mrnumber = {3232774},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.866/}
}
TY  - JOUR
AU  - Thompson, Lola
TI  - Variations on a question concerning the degrees of divisors of $x^n-1$
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2014
SP  - 253
EP  - 267
VL  - 26
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - http://www.numdam.org/articles/10.5802/jtnb.866/
DO  - 10.5802/jtnb.866
LA  - en
ID  - JTNB_2014__26_1_253_0
ER  - 
%0 Journal Article
%A Thompson, Lola
%T Variations on a question concerning the degrees of divisors of $x^n-1$
%J Journal de théorie des nombres de Bordeaux
%D 2014
%P 253-267
%V 26
%N 1
%I Société Arithmétique de Bordeaux
%U http://www.numdam.org/articles/10.5802/jtnb.866/
%R 10.5802/jtnb.866
%G en
%F JTNB_2014__26_1_253_0
Thompson, Lola. Variations on a question concerning the degrees of divisors of $x^n-1$. Journal de théorie des nombres de Bordeaux, Volume 26 (2014) no. 1, pp. 253-267. doi : 10.5802/jtnb.866. http://www.numdam.org/articles/10.5802/jtnb.866/

[1] D. Dummit, R. Foote, Abstract algebra. John Wiley & Sons, Inc., USA, 2004. | MR | Zbl

[2] P. Pollack, Not always buried deep: a second course in elementary number theory. Amer. Math. Soc., Providence, 2009. | MR | Zbl

[3] E. Saias, Entiers à diviseurs denses. I., J. Number Theory 62 (1997), 163–191. | MR | Zbl

[4] B. M. Stewart, Sums of distinct divisors, Amer. J. Math. 76 no. 4 (1954), 779–785. | MR | Zbl

[5] G. Tenenbaum, Lois de répartition des diviseurs, 5, J. London Math. Soc. (2) 20 (1979), 165–176. | MR | Zbl

[6] G. Tenenbaum, Sur un problème de crible et ses applications, Ann. Sci. École Norm. Sup. (4) 19 (1986), 1–30. | Numdam | MR | Zbl

[7] L. Thompson, Polynomials with divisors of every degree, J. Number Theory 132 (2012), 1038–1053. | MR

[8] L. Thompson On the divisors of x n -1 in F p [x], Int. J. Number Theory 9 (2013), 421–430. | MR | Zbl

[9] L. Thompson Products of distinct cyclotomic polynomials, Ph.D. thesis, Dartmouth College, 2012.

Cited by Sources: