We prove that, for any unit in a real number field of degree , there exits only a finite number of n-tuples in which have a purely periodic expansion by the Jacobi-Perron algorithm. This generalizes the case of continued fractions for . For we give an explicit algorithm to compute all these pairs.
Nous démontrons que, pour toute unité dans un corps de nombres réel de degré , il existe seulement un nombre fini de -uples dans qui ont un développement purement périodique par l’algorithme de Jacobi-Perron. Ce résultat généralise le cas des fractions continues pour . Pour nous donnons un algorithme qui permet de calculer explicitement tous ces couples.
@article{JTNB_2011__23_3_527_0, author = {Adam, Brigitte and Rhin, Georges}, title = {Periodic {Jacobi-Perron} expansions associated with a unit}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {527--539}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {23}, number = {3}, year = {2011}, doi = {10.5802/jtnb.776}, zbl = {1270.11068}, mrnumber = {2861074}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.776/} }
TY - JOUR AU - Adam, Brigitte AU - Rhin, Georges TI - Periodic Jacobi-Perron expansions associated with a unit JO - Journal de théorie des nombres de Bordeaux PY - 2011 SP - 527 EP - 539 VL - 23 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.776/ DO - 10.5802/jtnb.776 LA - en ID - JTNB_2011__23_3_527_0 ER -
%0 Journal Article %A Adam, Brigitte %A Rhin, Georges %T Periodic Jacobi-Perron expansions associated with a unit %J Journal de théorie des nombres de Bordeaux %D 2011 %P 527-539 %V 23 %N 3 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.776/ %R 10.5802/jtnb.776 %G en %F JTNB_2011__23_3_527_0
Adam, Brigitte; Rhin, Georges. Periodic Jacobi-Perron expansions associated with a unit. Journal de théorie des nombres de Bordeaux, Volume 23 (2011) no. 3, pp. 527-539. doi : 10.5802/jtnb.776. http://www.numdam.org/articles/10.5802/jtnb.776/
[1] B. Adam, Voronoï-algorithm expansion of two families with period length going to infinity. Math. of Comp. 64 (1995), no 212, 1687–1704. | MR | Zbl
[2] B. Adam and G. Rhin, Algorithme des fractions continues et de Jacobi-Perron. Bull. Austral. Math. Soc. 53 (1996), 341–350. | MR | Zbl
[3] L. Bernstein, The Jacobi-Perron Algorithm, Its Theory and Application. Lecture Notes in Mathematics, 207, Springer-Verlag, Berlin-New York, 1971. | MR | Zbl
[4] L. Bernstein, Einheitenberechnung in kubischen Körpern mittels des Jacobi-Perronschen Algorithmus aus der Rechenanlage. J. Reine Angew. Math. 244 (1970), 201–220. | MR | Zbl
[5] L. Bernstein, A 3-Dimensional Periodic Jacobi-Perron Algorithm of Period Length 8. J. of Number Theory 4 (1972), no.1, 48–69. | MR | Zbl
[6] L. Bernstein, On units and fundamental units. J. Reine Angew. Math. 257 (1972), 129–145. | MR | Zbl
[7] H. Cohen, A Course in Computational Algebraic Number Theory. Graduate Texts in Maths, 138, Springer Verlag, 2007. | MR | Zbl
[8] E. Dubois and R. Paysant-Le Roux, Une application des nombres de Pisot à l’algorithme de Jacobi-Perron. Monatschefte für Mathematik 98 (1984), 145–155. | MR | Zbl
[9] E. Dubois, A. Farhane and R. Paysant-Le Roux, The Jacobi-Perron Algorithm and Pisot numbers. Acta Arith. 111 (2004), no 3, 269–275. | MR | Zbl
[10] J. C. Lagarias, The Quality of the Diophantine Approximations found by the Jacobi-Perron Algorithm and Related Algorithms. Monatschefte für Math. 115 (1993), 299–328. | MR | Zbl
[11] C. Levesque and G. Rhin, Two Families of Periodic Jacobi Algorithms with Period Lengths Going to Infinity. Jour. of Number Theory 37 (1991), no. 2, 173–180. | MR | Zbl
[12] C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, GP-Pari version 2.3.4 (2009).
[13] O. Perron, Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus. Math. Ann. 64 (1907), 1–76. | MR
[14] H. J. Stender, Eine Formel für Grundeinheiten in reinen algebraischen Zahlkörpern dritten, vierten und sechsten Grades. Jour. of Number Theory 7 (1975), no. 2, 235–250. | MR | Zbl
Cited by Sources: