The aim of this paper is to study the elliptic fibrations of a singular surface to obtain elliptic curves with torsion points and rank over .
On s’intéresse aux fibrations elliptiques d’une surface singulière en vue de construire des courbes elliptiques avec torsion et rang sur .
Mots-clés : Elliptic fibrations, K3 surfaces
@article{JTNB_2011__23_1_183_0, author = {Harrache, Titem and Lecacheux, Odile}, title = {\'Etude des fibrations elliptiques d{\textquoteright}une surface $K3$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {183--207}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {23}, number = {1}, year = {2011}, doi = {10.5802/jtnb.756}, zbl = {1275.14033}, mrnumber = {2780625}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/jtnb.756/} }
TY - JOUR AU - Harrache, Titem AU - Lecacheux, Odile TI - Étude des fibrations elliptiques d’une surface $K3$ JO - Journal de théorie des nombres de Bordeaux PY - 2011 SP - 183 EP - 207 VL - 23 IS - 1 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.756/ DO - 10.5802/jtnb.756 LA - fr ID - JTNB_2011__23_1_183_0 ER -
%0 Journal Article %A Harrache, Titem %A Lecacheux, Odile %T Étude des fibrations elliptiques d’une surface $K3$ %J Journal de théorie des nombres de Bordeaux %D 2011 %P 183-207 %V 23 %N 1 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.756/ %R 10.5802/jtnb.756 %G fr %F JTNB_2011__23_1_183_0
Harrache, Titem; Lecacheux, Odile. Étude des fibrations elliptiques d’une surface $K3$. Journal de théorie des nombres de Bordeaux, Volume 23 (2011) no. 1, pp. 183-207. doi : 10.5802/jtnb.756. http://www.numdam.org/articles/10.5802/jtnb.756/
[1] W.P. Barth, K. Hulek, C.A. Peters, A. Van de Ven, Compact complex surfaces. A series of modern surveys in mathematics 4, Springer, 2004. | MR | Zbl
[2] A. Garbagnati, A. Sarti, Symplectic automorphisms of prime order on K3 surfaces. J. Algebra. 318(1) (2007), 323–350. | MR | Zbl
[3] T. Harrache, Etude des fibratons d’une surface . Thèse de l’Université Paris 6, 27 Nov. 2009.
[4] H. Inose, Defining equations of singular surfaces and a notion of isogeny. Intl. Symp. on Algebraic Geometry/ Kyoto 1977, Kinokuniya, (1978), 495–509. | MR | Zbl
[5] M. Kuwata, Elliptic fibrations on quartic surfaces with large Picard numbers. Pacific J. Math. 171(1) (1995), 231–243. | MR | Zbl
[6] M. Kuwata, T. Shioda, Elliptic parameters and defining equations for elliptic fibrations on a Kummer surface. Algebraic geometry in East Asia-Hanoi 2005, 177–215. Adv. Stud. Pure Math. vol 50, Math. Soc. Japan, Tokyo, 2008. | MR | Zbl
[7] O. Lecacheux, Rang de familles de courbes elliptiques. Acta Arith. 109(2) (2003), 131–142. | MR | Zbl
[8] A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. Inst. Hautes Études Sci. Publ.Math. 21 (1964). | Numdam | MR | Zbl
[9] P. Rabarison, Torsion et rang des courbes elliptiques définies sur les corps de nombres algébriques. Thèse de l’Université de Caen, 18 Sept. 2008.
[10] M. Schütt, T. Shioda, Elliptic Surfaces. ArXiv 0907.0298v. (2009).
[11] T. Shioda, On elliptic modular surfaces. J. Math. Soc. Japan 24 (1972), 20–59. | MR | Zbl
[12] H. Sterk, Finiteness results for algebraic surfaces. Math. Z., 189(4) (1985), 507–513. | MR | Zbl
[13] J.T. Tate, The arithmetic of elliptic curves. Invent. Math., 23 (1974), 179–206. | MR | Zbl
[14] L. C. Washington, Abelian number fields of small degree. Algebra and topology 1990 (Taejŏn, 1990), 63–78. Korea Adv. Inst. Sci. Tech., Taejon, 1990. | MR | Zbl
Cited by Sources: