Soit une translation ergodique sur un groupe abélien compact et soit une partie de dont la frontière est de measure de Haar nulle. La suite binaire infinie définie par si et sinon, est dite de Hartman. Notons le nombre de mots binaires de longueur qui apparaissent dans la suite vue comme un mot bi-infini. Cet article étudie la vitesse de croissance de . Celle-ci est toujours sous-exponentielle et ce résultat est optimal. Dans le cas où est une translation ergodique sur et un parallélotope rectangle pour lequel la longueur du -ème coté n’est pas dans pour tout , on obtient .
Let be an ergodic translation on the compact group and a continuity set, i.e. a subset with topological boundary of Haar measure 0. An infinite binary sequence defined by if and otherwise, is called a Hartman sequence. This paper studies the growth rate of , where denotes the number of binary words of length occurring in . The growth rate is always subexponential and this result is optimal. If is an ergodic translation on and is a box with side lengths not equal for all , we show that .
@article{JTNB_2005__17_1_347_0, author = {Steineder, Christian and Winkler, Reinhard}, title = {Complexity of {Hartman} sequences}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {347--357}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {1}, year = {2005}, doi = {10.5802/jtnb.494}, mrnumber = {2152228}, zbl = {1162.11320}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.494/} }
TY - JOUR AU - Steineder, Christian AU - Winkler, Reinhard TI - Complexity of Hartman sequences JO - Journal de Théorie des Nombres de Bordeaux PY - 2005 DA - 2005/// SP - 347 EP - 357 VL - 17 IS - 1 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.494/ UR - https://www.ams.org/mathscinet-getitem?mr=2152228 UR - https://zbmath.org/?q=an%3A1162.11320 UR - https://doi.org/10.5802/jtnb.494 DO - 10.5802/jtnb.494 LA - en ID - JTNB_2005__17_1_347_0 ER -
Steineder, Christian; Winkler, Reinhard. Complexity of Hartman sequences. Journal de Théorie des Nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 347-357. doi : 10.5802/jtnb.494. http://www.numdam.org/articles/10.5802/jtnb.494/
[1] P. Alessandri, V. Berthé, Three Distance Theorems and Combinatorics on Words. Enseig. Math. 44 (1998), 103–132. | MR 1643286 | Zbl 0997.11051
[2] P. Arnoux, V. Berthé, S. Ferenci, S. Ito, C. Mauduit, M. Mori, J. Peyrière, A. Siegel, J.- I. Tamura, Z.- Y. Wen, Substitutions in Dynamics, Arithmetics and Combinatorics. Lecture Notes in Mathematics 1794, Springer Verlag Berlin, 2002. | MR 1970385
[3] V. Berthé, Sequences of low complexity: Automatic and Sturmian sequences. Topics in Symbolic Dynamics and Applications. Lond. Math. Soc, Lecture Notes 279, 1–28, Cambridge University Press, 2000. | MR 1776754 | Zbl 0976.11014
[4] M. Denker, Ch. Grillenberger, K. Sigmund, Ergodic Theory on Compact Spaces. Lecture Notes in Mathematics 527, Springer, Heidelberg, 1976. | MR 457675 | Zbl 0328.28008
[5] S. Frisch, M. Pašteka, R. F. Tichy, R. Winkler, Finitely additive measures on groups and rings. Rend. Circolo Mat. di Palermo 48 Series II (1999), 323–340. | MR 1692930 | Zbl 0931.43001
[6] G. A. Hedlund, M. Morse, Symbolic Dynamics I. Amer. J. Math. 60 (1938), 815–866. | MR 1507944 | Zbl 0019.33502
[7] G. A. Hedlund, M. Morse, Symbolic Dynamics II. Amer. J. Math. 62 (1940), 1–42. | MR 745 | Zbl 0022.34003
[8] E. Hewitt, K. A. Ross, Abstract Harmonic Analysis I. Springer, Berlin—Göttingen—Heidelberg, 1963. | MR 156915 | Zbl 0115.10603
[9] L. Kuipers, H. Niederreiter, Uniform distribution of sequences. Wiley, New York, 1974. | MR 419394 | Zbl 0281.10001
[10] J. Schmeling, E. Szabó, R. Winkler, Hartman and Beatty bisequences. Algebraic Number Theory and Diophantine Analysis, 405–421, Walter de Gruyter, Berlin, 2000. | MR 1770477 | Zbl 0965.11035
[11] P. Walters, An Introduction to Ergodic Theory. Grad. Texts in Math. Springer Verlag New York, 2000. | MR 648108 | Zbl 0475.28009
[12] R. Winkler, Ergodic Group Rotations, Hartman Sets and Kronecker Sequences. Monatsh. Math. 135 (2002), 333–343. | MR 1914810 | Zbl 1008.37005
Cité par Sources :