Supposons que la famille de suites arithmétiques soit un recouvrement disjoint des nombres entiers. Nous prouvons qui si pour des nombres premiers et des entiers , il existe alors un tel que . On conjecture que le résultat de divisibilité est vrai quelques soient les raisons .
Un recouvrement disjoint est appelé saturé si la somme des inverses des raisons est égale à 1. La conjecture ci-dessus est vraie pour des recouvrements saturés avec des dont le produit des facteurs premiers n’est pas supérieur à .
Let the collection of arithmetic sequences be a disjoint covering system of the integers. We prove that if for some primes and integers , then there is a such that . We conjecture that the divisibility result holds for all moduli.
A disjoint covering system is called saturated if the sum of the reciprocals of the moduli is equal to . The above conjecture holds for saturated systems with such that the product of its prime factors is at most .
@article{JTNB_2005__17_1_51_0, author = {Bar\'at, J\'anos and Varj\'u, P\'eter P.}, title = {A contribution to infinite disjoint covering systems}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {51--55}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {1}, year = {2005}, doi = {10.5802/jtnb.476}, mrnumber = {2152210}, zbl = {1079.11008}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.476/} }
TY - JOUR AU - Barát, János AU - Varjú, Péter P. TI - A contribution to infinite disjoint covering systems JO - Journal de Théorie des Nombres de Bordeaux PY - 2005 DA - 2005/// SP - 51 EP - 55 VL - 17 IS - 1 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.476/ UR - https://www.ams.org/mathscinet-getitem?mr=2152210 UR - https://zbmath.org/?q=an%3A1079.11008 UR - https://doi.org/10.5802/jtnb.476 DO - 10.5802/jtnb.476 LA - en ID - JTNB_2005__17_1_51_0 ER -
Barát, János; Varjú, Péter P. A contribution to infinite disjoint covering systems. Journal de Théorie des Nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 51-55. doi : 10.5802/jtnb.476. http://www.numdam.org/articles/10.5802/jtnb.476/
[1] J. Barát, P.P. Varjú, Partitioning the positive integers to seven Beatty sequences. Indag. Math. 14 (2003), 149–161. | MR 2026810 | Zbl 1052.11018
[2] A.S. Fraenkel, Complementing and exactly covering sequences. J. Combin. Theory Ser. A 14 (1973), 8–20. | MR 309770 | Zbl 0257.05023
[3] A.S. Fraenkel, R.J. Simpson, On infinite disjoint covering systems. Proc. Amer. Math. Soc. 119 (1993), 5–9. | MR 1148023 | Zbl 0784.05011
[4] R.L. Graham, Covering the positive integers by disjoint sets of the form . J. Combin Theory Ser. A 15 (1973), 354–358. | Zbl 0279.10042
[5] C.E. Krukenberg, Covering sets of the integers. Ph. D. Thesis, Univ. of Illinois, Urbana-Champaign, IL, (1971)
[6] E. Lewis, Infinite covering systems of congruences which don’t exist. Proc. Amer. Math. Soc. 124 (1996), 355–360. | MR 1301513 | Zbl 0862.11009
[7] Š. Porubský, J. Schönheim, Covering Systems of Paul Erdős, Past, Present and Future. In Paul Erdős and his Mathematics I., Springer, Budapest, (2002), 581–627. | MR 1954716 | Zbl 1055.11007
[8] Š. Porubský, Covering systems and generating functions. Acta Arithm. 26 (1975), 223–231. | MR 379423 | Zbl 0268.10044
[9] R.J. Simpson, Disjoint covering systems of rational Beatty sequences. Discrete Math. 92 (1991), 361–369. | MR 1140599 | Zbl 0742.11011
[10] S.K. Stein, Unions of Arithmetic Sequences. Math. Annalen 134 (1958), 289–294. | MR 93493 | Zbl 0084.04302
[11] R. Tijdeman, Fraenkel’s conjecture for six sequences. Discrete Math. 222 (2000), 223–234. | MR 1771401 | Zbl 01506830
Cité par Sources :