Effective periods were defined by Kontsevich and Zagier as complex numbers whose real and imaginary parts are values of absolutely convergent integrals of -rational functions over -semi-algebraic domains in . The Kontsevich–Zagier period conjecture states that any two different integral expressions of a period are related by a finite sequence of transformations only using three rules respecting the rationality of functions and domains: integral addition by integrands or domains, change of variables and Stokes’ formula.
In this paper, we introduce two geometric interpretations of this conjecture, seen as a generalization of Hilbert’s third problem involving either compact semi-algebraic sets or rational polyhedra equipped with piece-wise algebraic forms. Based on known partial results for analogous Hilbert’s third problems, we study possible geometric schemes to prove this conjecture and their potential obstructions.
Les périodes effectives furent définies par Kontsevich et Zagier comme étant les nombres complexes dont les parties réelle et imaginaire sont valeurs d’intégrales absolument convergentes de fonctions -rationnelles sur des domaines -semi-algébriques dans . La conjecture des périodes de Kontsevich–Zagier affirme que si une période admet deux représentations intégrales, alors elles sont reliées par une suite finie d’opérations en utilisant uniquement trois règles respectant la rationalité des fonctions et domaines : sommes d’intégrales par intégrandes ou domaines, changement de variables et formule de Stokes.
Dans cet article, nous introduisons deux interprétations géométriques de cette conjecture, vue comme une généralisation du 3ème problème de Hilbert soit pour des ensembles semi-algébriques compacts soit pour des polyèdres rationnels munis d’une forme volume algébrique par morceaux. Basés sur des résultats partiels connus pour des problèmes de Hilbert analogues, nous étudions des schémas géométriques possibles pour obtenir une preuve de la conjecture et ses obstructions potentielles.
Revised:
Accepted:
Published online:
Keywords: Periods, Kontsevich–Zagier period conjecture, Hilbert third problem.
@article{JTNB_2022__34_2_323_0, author = {Cresson, Jacky and Viu-Sos, Juan}, title = {On the equality of periods of {Kontsevich{\textendash}Zagier}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {323--343}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {2}, year = {2022}, doi = {10.5802/jtnb.1204}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1204/} }
TY - JOUR AU - Cresson, Jacky AU - Viu-Sos, Juan TI - On the equality of periods of Kontsevich–Zagier JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 323 EP - 343 VL - 34 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1204/ DO - 10.5802/jtnb.1204 LA - en ID - JTNB_2022__34_2_323_0 ER -
%0 Journal Article %A Cresson, Jacky %A Viu-Sos, Juan %T On the equality of periods of Kontsevich–Zagier %J Journal de théorie des nombres de Bordeaux %D 2022 %P 323-343 %V 34 %N 2 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.1204/ %R 10.5802/jtnb.1204 %G en %F JTNB_2022__34_2_323_0
Cresson, Jacky; Viu-Sos, Juan. On the equality of periods of Kontsevich–Zagier. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 2, pp. 323-343. doi : 10.5802/jtnb.1204. http://www.numdam.org/articles/10.5802/jtnb.1204/
[1] Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses, 17, Société Mathématique de France, 2004 | Zbl
[2] Idées galoisiennes, Éditions de l’École polytechnique, 2012, pp. 1-16 | MR
[3] Periods and the conjectures of Grothendieck and Kontsevich–Zagier, Eur. Math. Soc. Newsl., Volume 91 (2014), pp. 12-18 | MR | Zbl
[4] Une version relative de la conjecture des périodes de Kontsevich–Zagier, Ann. Math., Volume 181 (2015) no. 3, pp. 905-992 | DOI | MR | Zbl
[5] Algorithms in real algebraic geometry, Algorithms and Computation in Mathematics, 10, Springer, 2006
[6] On the volume of balls (http://www.math.lsa.umich.edu/~ablass/vol.pdf)
[7] Real Algebraic Geometry, Springer, 1998 | DOI
[8] The class of the affine line is a zero divisor in the Grothendieck ring, J. Algebr. Geom., Volume 27 (2018) no. 2, pp. 203-209 | DOI | MR | Zbl
[9] Décomposition des polyèdres: le point sur le troisième problème de Hilbert, Séminaire Bourbaki 1984/85 (Astérisque), Volume 1984, Société Mathématique de France, 1986, pp. 133-134 | Numdam | Zbl
[10] Exponential periods and o-minimality I (2020) (https://arxiv.org/abs/2007.08280)
[11] On the transcendence and complexity of periods of Kontsevich–Zagier (in preparation)
[12] Ueber den Rauminhalt, Math. Ann., Volume 55 (1901) no. 3, pp. 465-478 | DOI | MR
[13] On the values of -functions, Comment. Math. Helv., Volume 89 (2014) no. 2, pp. 313-341 | DOI | Zbl
[14] Real homotopy theory of semi-algebraic sets, Algebr. Geom. Topol., Volume 11 (2011) no. 5, pp. 2477-2545 | DOI | MR | Zbl
[15] Volume-preserving PL-maps between polyhedra (2004) (http://www.math.ucla.edu/~pak/papers/henri4.pdf)
[16] Transcendence and Linear Relations of 1-Periods, Cambridge Tracts in Mathematics, 227, Cambridge University Press, 2022 | DOI
[17] On the triangulation of manifolds and the Hauptvermutung, Bull. Am. Math. Soc., Volume 75 (1969), pp. 742-749 | DOI | MR | Zbl
[18] Deformations of algebras over operads and the Deligne conjecture, Conférence Moshé Flato 1999, Vol. I (Dijon) (Mathematical Physics Studies), Volume 21, Kluwer Academic Publishers, 2000, pp. 255-307 | MR | Zbl
[19] Periods, Mathematics unlimited—2001 and beyond, Springer, 2001, pp. 771-808 | DOI | Zbl
[20] A volume-preserving counterexample to the Seifert conjecture, Comment. Math. Helv., Volume 71 (1996) no. 1, pp. 70-97 | DOI | MR | Zbl
[21] Equidecomposability and discrepancy; a solution of Tarski’s circle-squaring problem, J. Reine Angew. Math., Volume 404 (1990), pp. 77-117 | MR | Zbl
[22] Rationality of motivic zeta function and cut-and-paste problem (2014) (https://arxiv.org/abs/1410.7099)
[23] The Grothendieck ring of varieties and piecewise isomorphisms, Math. Z., Volume 265 (2010) no. 2, pp. 321-342 | MR | Zbl
[24] Two complexes which are homeomorphic but combinatorially distinct, Ann. Math., Volume 74 (1961), pp. 575-590 | DOI | MR | Zbl
[25] Trans. Amer. Math. Soc, Trans. Am. Math. Soc., Volume 120 (1965), pp. 286-294
[26] What is ...a period?, Notices Am. Math. Soc., Volume 61 (2014) no. 8, pp. 898-899 | DOI | MR | Zbl
[27] -triangulations of semialgebraic sets, J. Topol., Volume 10 (2017) no. 3, pp. 765-775 | DOI | MR | Zbl
[28] Lectures on Discrete and Polyhedral Geometry (2015) (http://www.math.ucla.edu/~pak/geompol8.pdf)
[29] Triangulations of subanalytic sets and locally subanalytic manifolds, Trans. Am. Math. Soc., Volume 286 (1984) no. 2, pp. 727-750 | DOI | MR | Zbl
[30] A comprehensive introduction to differential geometry. Vol. I, Publish or Perish Inc., 1979 | MR
[31] Conditions nécessaires et suffisantes pour l’équivalence des polyèdres de l’espace euclidien à trois dimensions, Comment. Math. Helv., Volume 40 (1965), pp. 43-80 | DOI | Zbl
[32] A semi-canonical reduction for periods of Kontsevich–Zagier, Int. J. Number Theory, Volume 17 (2021) no. 1, pp. 147-174 | DOI | MR | Zbl
[33] Valeurs zêta multiples. Une introduction, J. Théor. Nombres Bordeaux, Volume 12 (1999) no. 2, pp. 581-595 | DOI | Zbl
[34] Transcendence of periods: the state of the art, Pure Appl. Math. Q., Volume 2 (2006) no. 2, pp. 435-463 | DOI | MR | Zbl
[35] Raconte moi ...une période, Gaz. Math., Soc. Math. Fr., Volume 143 (2015), pp. 75-77 | Zbl
[36] Perspectives on scissors congruence, Bull. Am. Math. Soc., Volume 53 (2016) no. 2, pp. 269-294 | DOI | MR | Zbl
Cited by Sources: