Dans cette note, nous prouvons que pour tout entier fixé
In this note, we prove that for any fixed integer
Révisé le :
Accepté le :
Publié le :
Mots-clés : primes, digit, composite numbers
@article{JTNB_2019__31_3_689_0, author = {Benli, K\"ubra}, title = {On the number of prime factors of the composite numbers resulting after a change of digits of primes}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {689--696}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {3}, year = {2019}, doi = {10.5802/jtnb.1103}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.1103/} }
TY - JOUR AU - Benli, Kübra TI - On the number of prime factors of the composite numbers resulting after a change of digits of primes JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 689 EP - 696 VL - 31 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1103/ DO - 10.5802/jtnb.1103 LA - en ID - JTNB_2019__31_3_689_0 ER -
%0 Journal Article %A Benli, Kübra %T On the number of prime factors of the composite numbers resulting after a change of digits of primes %J Journal de théorie des nombres de Bordeaux %D 2019 %P 689-696 %V 31 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1103/ %R 10.5802/jtnb.1103 %G en %F JTNB_2019__31_3_689_0
Benli, Kübra. On the number of prime factors of the composite numbers resulting after a change of digits of primes. Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 3, pp. 689-696. doi : 10.5802/jtnb.1103. https://www.numdam.org/articles/10.5802/jtnb.1103/
[1] On the Integral Divisors of
[2] Le grand crible dans la théorie analytique des nombres, Astérisque, 18, Société Mathématique de France, 1987 | Zbl
[3] Solution to problem 1029: Erdős and the computer, Math. Mag., Volume 52 (1979), pp. 180-181
[4] On the least prime in an arithmetic progression. I. The basic theorem, Mat. Sb., N. Ser., Volume 15 (1944) no. 57, pp. 139-178 | MR | Zbl
[5] On the number of distinct prime factors of
[6] A remark on primality testing and decimal expansions, J. Aust. Math. Soc., Volume 91 (2011) no. 3, pp. 405-413 | MR | Zbl
Cité par Sources :