In this note, we prove that for any fixed integer , for all and for all sufficiently large , there exist at least primes , such that all of the integers are composite having at least distinct prime factors.
Dans cette note, nous prouvons que pour tout entier fixé , pour tout et pour tout suffisamment grand, il existe au moins nombres premiers tels que tous les nombres entiers de la forme avec sont des nombres composés ayant au moins facteurs premiers distincts.
Revised:
Accepted:
Published online:
Keywords: primes, digit, composite numbers
@article{JTNB_2019__31_3_689_0, author = {Benli, K\"ubra}, title = {On the number of prime factors of the composite numbers resulting after a change of digits of primes}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {689--696}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {3}, year = {2019}, doi = {10.5802/jtnb.1103}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1103/} }
TY - JOUR AU - Benli, Kübra TI - On the number of prime factors of the composite numbers resulting after a change of digits of primes JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 689 EP - 696 VL - 31 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1103/ DO - 10.5802/jtnb.1103 LA - en ID - JTNB_2019__31_3_689_0 ER -
%0 Journal Article %A Benli, Kübra %T On the number of prime factors of the composite numbers resulting after a change of digits of primes %J Journal de théorie des nombres de Bordeaux %D 2019 %P 689-696 %V 31 %N 3 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.1103/ %R 10.5802/jtnb.1103 %G en %F JTNB_2019__31_3_689_0
Benli, Kübra. On the number of prime factors of the composite numbers resulting after a change of digits of primes. Journal de théorie des nombres de Bordeaux, Volume 31 (2019) no. 3, pp. 689-696. doi : 10.5802/jtnb.1103. http://www.numdam.org/articles/10.5802/jtnb.1103/
[1] On the Integral Divisors of , Ann. Math., Volume 5 (1904) no. 4, pp. 173-180 | DOI | MR | Zbl
[2] Le grand crible dans la théorie analytique des nombres, Astérisque, 18, Société Mathématique de France, 1987 | Zbl
[3] Solution to problem 1029: Erdős and the computer, Math. Mag., Volume 52 (1979), pp. 180-181
[4] On the least prime in an arithmetic progression. I. The basic theorem, Mat. Sb., N. Ser., Volume 15 (1944) no. 57, pp. 139-178 | MR | Zbl
[5] On the number of distinct prime factors of , Monatsh. Math., Volume 175 (2014) no. 2, pp. 293-305 | DOI | MR | Zbl
[6] A remark on primality testing and decimal expansions, J. Aust. Math. Soc., Volume 91 (2011) no. 3, pp. 405-413 | MR | Zbl
Cited by Sources: